Are Click-through Data Adequate for Learning Web Search Rankings?

Zhicheng Dou, Ruihua Song, Xiaojie Yuan*, and Ji-Rong Wen
Microsoft Research Asia, *Nankai University
2008.10
Outline

• Motivation
• Related works
• Methodology
• Datasets
• Preferences Extraction Strategies
• Correlation between HRS and CT
• Effectiveness of CT for learning to rank
• Conclusions
Motivation

• Learning-to-rank algorithms:

• Training data
 – Human Judgments
 • costly and time-consuming
 • Limited relevance levels
 • Difficult, especially for ambiguous queries
 – Clickthrough data
 • Easy to get, unlimited amount
 • Decisions of a large number of real-world users

• Motivation questions
 – What is the reliability of CT?
 – Are CT useful and effective in learning to rank?
Related works

• Joachims et al.
 – Extract reliable pairs from individual queries and query chains (e.g., click>non-click above)
 – Laboratorial settings

• Agichtein, Brill, and Dumais
 – User behavior is used as features
 – Large amounts of human judgments are still needed
Our approach

• Aggregate user clicks for each query-document pair
• Generate training examples (relative preferences, document pairs) by comparing aggregated click frequencies
• Use preferences to Learn and Evaluate ranking
Framework

Experiments Part I: Correlation between CT and Human Ratings

Experiments Part II: Effectiveness Comparison between CT and Human Ratings

Clickthrough Data
Pairwise Preference Extraction
RankNet

Preferences Extraction Strategies

Human Ratings
Pairwise Preference Extraction
RankNet

CT
Human Ratings
RankNet Results

Pairwise Preference CT
Pairwise Preference Extraction
RankNet

Preferences Extraction Strategies
Human Ratings
Pairwise Preference Extraction
RankNet

CT
Human Ratings
RankNet Results
Datasets

- **Human Rating Data (HRS Data)**
 - 10,000 training, 1,000 validation, and 1,000 test

- **Clickthrough Data**
 - 46 days (July 9, 2007 to August 23, 2007)
 - Calculate an aggregated click frequency for each query-document pair
 - Ignore other information, e.g., click position

- **Format**: Query ID, Doc ID, Rating, *ClickFreq*, {features}

<table>
<thead>
<tr>
<th>Table 1: Basic statistics of dataset.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Queries</td>
</tr>
<tr>
<td>#Documents</td>
</tr>
<tr>
<td>#Judged Documents</td>
</tr>
<tr>
<td>#Clicked Documents</td>
</tr>
<tr>
<td>#Clicked Documents</td>
</tr>
</tbody>
</table>
Preference Extraction Strategies

- Use pair-wise relevance preferences

- Strategies
 - **Label**: If \(\text{rating}(q, d_i) > \text{rating}(q, d_j) \), a relevance preference example \(\text{rel}(q, d_i) >_{\text{lbl}} \text{rel}(q, d_j) \) is extracted.

 - **CT**: Let click frequency difference \(\text{cdiff}(q, d_i, d_j) = \text{click}(q, d_i) - \text{click}(q, d_j) \) If \(\text{cdiff}(q, d_i, d_j) > 0 \), a relevance preference example \(\text{rel}(q, d_i) >_{\text{ct}} \text{rel}(q, d_j) \) is extracted.

 - **CT_Gn**: A relevance preference example \(\text{rel}(q, d_i) >_{\text{ct}} \text{rel}(q, d_j) \) is extracted only when \(\text{cdiff}(q, d_i, d_j) > n \).
Part I: Correlation between Label and CT

• Using Kendall Tau-b

• Results
 – Small correlation values between CT and human ratings
 – CT correlates more to human judgments when including un-clicked documents (AtLeastOneClicked)

| Table 2: Overall correlation between click-through data and human judgments (Kendall tau-b) |
|-----------------|-----------------|-----------------|-----------------|
| | Training | Validation | Test |
| BothClicked | 0.201274 | 0.163600 | 0.194758 |
| AtLeastOneClicked | 0.345716 | 0.300375 | 0.363094 |
Part I: Correlation between Label and CT

- Click frequency difference (CT_Gn)
 - Pairs with larger click frequency differences correlate more to human judgments
Part I: Correlation between Label and CT

• Summary
 – Clickthrough data and human ratings are not totally same
 – Pairs with larger click frequency differences correlate more to human judgments
Part II: Effectiveness of CT for learning to rank

- Use RankNet
- Train RankNet using pairwise preferences
- Evaluation metrics
 - NDCG@5, based upon human ratings
 - Kendall Tau-b, based upon clickthrough
Part II: Effectiveness of CT for learning to rank

• Overall results
 – CT outperforms Label with all sizes of training set when using equivalent queries
 – Preferences in CT are more useful and effective for learning, even using a straightforward preference generation strategy
Part II: Effectiveness of CT for learning to rank

• Click frequency Differences (CT_Gn)
 – Pairs with larger click frequency differences do not achieve better performance
 • Possible reason: Much Less pairs

![Graph showing NDCG@5 and Kendall tau-b scores against click frequency difference](image-url)
Part II: Effectiveness of CT for learning to rank

- Three preference selection strategies
 - 10To25, 26To99, and GE100
 - Equal amounts of training examples
- Correlation with human ratings
 - GE100 > 26To99 > 10To25

Table 3: Correlation between human judgments and click-through data under three different pair selection strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT_10To25</td>
<td>0.305743</td>
<td>0.270589</td>
<td>0.306940</td>
</tr>
<tr>
<td>CT_26To99</td>
<td>0.390308</td>
<td>0.361930</td>
<td>0.337831</td>
</tr>
<tr>
<td>CT_GE100</td>
<td>0.617736</td>
<td>0.628011</td>
<td>0.605718</td>
</tr>
</tbody>
</table>
Part II: Effectiveness of CT for learning to rank

- Learning performance
 - $10^{To25} > 26^{To99} > GE^{100}!!!$

- Possible reasons:
 - Pairs with larger click frequency differences
 - More reliable, but simple, biased, contain limited information
 - Pairs with smaller click frequency differences
 - Are more comprehensive and informative

Figure 7: RankNet performance of three different pair selection strategies
Part II: Effectiveness of CT for learning to rank

- **Stability**
 - CT is less sensitive to click spam
Key conclusions/contributions

• Conclusions
 – Click-through data are effective for learning web search rankings, even better than human judgments;
 – Click-through data can be more reliable, more comprehensive, and more informative than human judgments in some cases;
 – Reliability and coverage of training data are both important for learning.
Future Work

• Click-through Modeling
 – Position Bias Removing

• Combination of Click-through and Human Judgments
Questions?

Thanks.
Part I: Correlation between HRS and CT

- **Click Entropy**

\[
\text{ClickEntropy}(q) = \sum_{d \in D(q)} - P(d | q) \log_2 P(d | q)
\]

- CT correlates more to human judgments for queries with smaller click entropies
Part II: Effectiveness of CT for learning to rank - Click Entropy

- Pairs in human ratings:
 - Bin1: biased
 - Bin4: Less reliable

- Pairs in CT: more robust for learning
 - Bin1: more comprehensive
 - Bin4: more reliable