TAIL RISK BOUNDS
FOR ON-LINE ALGORITHMS

Nicolò Cesa-Bianchi
Università di Milano, Italy

Joint work with: Claudio Gentile
Examples \((X_t, Y_t)\) are i.i.d. according to fixed and unknown probability distribution on \(\mathcal{X} \times \mathcal{Y}\)

Learning algorithm

\[(X_1, Y_1), \ldots, (X_n, Y_n) \rightarrow A \rightarrow \hat{H} : \mathcal{X} \rightarrow \mathcal{D}\]

Loss \(\ell : \mathcal{D} \times \mathcal{Y} \rightarrow \mathbb{R}\) \((\mathcal{D} = \text{decision space})\)

Risk \(\text{risk}(H) = \mathbb{E} \ell(H(X), Y)\)

Empirical risk \(\text{risk}_{\text{emp}}(H) = \frac{1}{n} \sum_{t=1}^{n} \ell(H(X_t), Y_t)\)
EXAMPLES

Regression with square loss:

\[\mathcal{Y} = \mathcal{D} = \mathbb{R} \quad \ell(H(x), y) = (H(x) - y)^2 \]

Binary classification:

\[\mathcal{Y} = \mathcal{D} = \{-1, 1\} \quad \ell(H(x), y) = \mathbb{I}_{\{H(x) \neq y\}} \]

Classification with absolute loss:

\[\mathcal{Y} = \{-1, 1\} \quad \mathcal{D} = [-1, 1] \quad \ell(H(x), y) = |H(x) - y| \]
RISK BOUNDS

\[(X_1, Y_1), \ldots, (X_n, Y_n) \rightarrow A \rightarrow \hat{H} : \mathcal{X} \rightarrow \mathcal{D}\]

\(\hat{H}\) is (random) hypothesis output by learner

Goal: Show that \(\text{risk}(\hat{H})\) is small with high probability

We assume bounded loss functions
DATA-DEPENDENT VC THEORY

\(\mathcal{H} = \) set of functions \(H : \mathcal{X} \rightarrow \mathcal{D} \) from which \(\hat{H} \) is selected

w.h.p. for all \(h \in \mathcal{H} \)

\[
\text{risk}(h) \leq \text{risk}_{\text{emp}}(h) + c_1 \sqrt{\text{risk}_{\text{emp}}(h) \frac{V_{\mathcal{H}} \ln n}{n}} + c_2 \frac{V_{\mathcal{H}} \ln n}{n}
\]

where \(n \) is sample size

VC theory of generalization studies properties of \(\mathcal{H} \)

We study a small subclass of \(\mathcal{H} \) generated by the interaction between a learner and the training data
AN ALGORITHM-DEPENDENT THEORY

\[\langle \quad \rangle \rightarrow A \rightarrow H_0 \]
\[\langle (X_1, Y_1) \rangle \rightarrow A \rightarrow H_1 \]
\[\langle (X_1, Y_1), (X_2, Y_2) \rangle \rightarrow A \rightarrow H_2 \]
\[\vdots \]
\[\langle (X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n) \rangle \rightarrow A \rightarrow H_n \]

The ensemble of functions generated by \(A \):

\[H_0, H_1, \ldots, H_{n-1}, H_n \]
GOALS

1. Bound the **average risk of the ensemble** in terms of the **incremental performance** of the algorithm on the data.

2. Find an element of the ensemble whose risk is close to the ensemble average

3. Relate to optimal risk in \mathcal{H}
STEP 1: BOUND THE AVERAGE RISK

$risk(H_{t-1}) - \ell(H_{t-1}(X_t), Y_t)$ is a martingale difference sequence

$$\mathbb{E} \left[risk(H_{t-1}) - \ell(H_{t-1}(X_t), Y_t) \mid (X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1}) \right] = 0$$

Associated martingale

$$\sum_{t=1}^{n} \left(risk(H_{t-1}) - \ell(H_{t-1}(X_t), Y_t) \right)$$

$$\iff \frac{1}{n} \sum_{t=1}^{n} risk(H_{t-1}) - \frac{1}{n} \sum_{t=1}^{n} \ell(H_{t-1}(X_t), Y_t)$$

average risk \hspace{2cm} on-line statistic
BERNSTEIN’S BOUND

If Z_1, Z_2, \ldots is a martingale difference sequence with increments bounded by 1 and

$$V_n = \sum_{t=1}^{n} \mathbb{E} \left[Z_t^2 \mid Z_1, \ldots, Z_{t-1} \right]$$

then for all $S, K > 0$

$$\mathbb{P} \left(\sum_{t=1}^{n} Z_n \geq S, \quad V_n \leq K \right) \leq \exp \left(-\frac{S^2}{2(S/3 + K)} \right)$$
APPLICATION OF BERNSTEIN’S BOUND

Since $0 \leq \ell \leq 1$,

$$\text{VAR} \left[\ell(H_{t-1}(X_t), Y_t) \middle| (X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1}) \right]$$

$$\leq \mathbb{E} \left[\text{risk}(H_{t-1}) \middle| (X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1}) \right]$$

$$\frac{1}{n} \sum_{t=1}^{n} \text{risk}(H_{t-1}) \leq \frac{M_n}{n} + \frac{c}{n} \left(\ln M_n + \sqrt{M_n \ln M_n} \right) \text{ w.h.p.}$$

Note that $\Omega(1) = M_n = O(n)$

$$\frac{M_n}{n} = \frac{1}{n} \sum_{t=1}^{n} \ell(H_{t-1}(X_t), Y_t)$$

is the on-line statistic
STEP 2: PICK A GOOD FUNCTION IN THE ENSEMBLE

H_0, H_1, \ldots, H_n ensemble of functions

1. test each H_t on $(X_{t+1}, Y_{t+1}), \ldots, (X_n, Y_n)$
2. pick $\hat{H} = H_{t^*}$ minimizing a penalized risk estimate

\[
\text{risk}(\hat{H}) \leq \frac{M_n}{n} + \frac{c}{n} \left((\ln n)^2 + \sqrt{M_n \ln n} \right) \quad \text{w.h.p.}
\]
STEP 3: RELATE TO OPTIMAL RISK IN \mathcal{H}

So far, no assumption on learner A

Via specific analyses, we can relate M_n/n to best risk in \mathcal{H}

Example: Vovk’s aggregating forecaster for regression with square loss ($\mathcal{H} = \text{RKHS}$)

$$h_n^* = \arg \min_{h \in \mathcal{H}} \left(\text{risk}(h) + \frac{\|h\|^2}{n} \right)$$

$$\frac{M_n}{n} \leq \text{risk}(h_n^*) + \frac{\|h_n^*\|^2}{n} + c_1 \frac{\sqrt{\text{risk}(h_n^*)}}{n} + c_2 \frac{Y^2}{n} \sum_i \ln(1 + \lambda_i)$$

w.h.p. where $\lambda_1, \lambda_2, \ldots$ are the eigenvalues of the kernel matrix
MORE EXAMPLES

Pointwise bounds for sequences \((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{-1, +1\}\) that are linearly separable in a given RKHS \(\mathcal{H}\)

Kernel Perceptron

\[M_n \leq \frac{1}{\gamma} \sqrt{\sum_i \lambda_i} \]

Kernel 2nd order Perceptron

\[M_n \leq \frac{1}{\gamma} \sqrt{\left(1 + \sum_i f(x_i)^2\right) \sum_i \ln(1 + \lambda_i)} \]

\(f \in \mathcal{H}\) is a linear separator with margin \(\gamma\)

\(\lambda_1, \lambda_2, \ldots\) are the eigenvalues of the kernel matrix

All sums are on mistaken examples
CONCLUSIONS

- Algorithm-based vs. \mathcal{H}-based approach to analysis of risk
- Data-dependent bounds for any learner in terms of on-line statistic
- Bounds on $\inf_{h \in \mathcal{H}} \text{risk}(h)$ for specific learners
- Fast rates without fancy statistical tools
EXPERIMENTS ON RCV1 CORPUS

Documents chronologically ordered

Only 50 most frequent categories

Training set: blocks of increasing size (from 5K to 80K)

Test set: always a 20K block

Bound on test error:

\[M_n + \frac{1}{n} \left(c_1 \ln \frac{M_n}{\delta} + c_2 \sqrt{M_n \ln \frac{M_n}{\delta}} \right)\]

We ran a voted Perceptron with a linear kernel
AVERAGES OVER ALL CATEGORIES

![Graph showing the relationship between risk and document count]

- **X-axis:** DOCUMENTS
- **Y-axis:** Risk
- **Legend:**
 - Estimate (red line)
 - Risk (green dashed line)

The graph illustrates how the risk decreases as the number of documents increases.
ESTIMATES AFTER 5K DOCUMENTS

![Graph showing estimates after 5K documents]

- Estimate
- Risk

Categories range from 0 to 50.
ESTIMATES AFTER 10K DOCUMENTS
ESTIMATES AFTER 20K DOCUMENTS
ESTIMATES AFTER 40K DOCUMENTS
ESTIMATES AFTER 80K DOCUMENTS

![Graph showing estimates and risk after 80,000 documents]