On the relation between certain stochastic control problems and probabilistic inference

Manfred Opper

Computer Science
• Control problem \rightarrow inference problem (Bert Kappen & Emmanuel Todorov)

• Inference problem \rightarrow control problems
 \hspace{2cm} \text{Var method}

• Things that could be learnt from this and possible extensions
Discrete times: MDPS

- Assume Markov process with transition probabilities $q(x'|x, u)$ tuned by a 'control' variable u.

- Try to minimise total expected costs

$$V_0(x) = \sum_{t=0}^{T} E^u [L_t(X_t, u_t)|x_0 = x]$$

- Define 'Value' of state x

$$V_t(x) = \sum_{\tau \geq t} E^u [L_\tau(X_\tau, u_\tau)|X_t = x]$$

- Solution via Bellman equation

$$V_t(x) = \min_u \left\{ L_t(x, u) + \sum_{x'} q_t(x'|x, u)V_{t+\Delta t}(x') \right\}$$
Continuous time: SDEs

- (Ito) stochastic differential equation for state \(X(t) \in \mathbb{R}^d \)

\[
dX(t) = \left(u(X_t, t) + f(X(t)) \right) dt + D^{1/2}(X(t)) \ dW(t)
\]

- Limit of discrete time process \(X_k \)

\[
\Delta X_k \equiv X_{k+1} - X_k = (u_t + f(X_k)) \Delta t + D^{1/2}(X_k) \sqrt{\Delta t} \ \epsilon_k.
\]

\(\epsilon_k \) i.i.d. Gaussian.
Continuous time ctd

• Try to minimise total expected costs

\[V_0(x) = \int_{t=0}^{T} E^u [L_t(X(t), u(t)) | X(0) = x] \]

• Define 'Value' of state \(x \)

\[V_t(x) = \int_t^{T} E^u [L_s(X(s), u(s)) | X(t) = x] \, ds \]

• Solution via Hamilton - Jacobi - Bellman equation

\[-\frac{\partial V_t(x)}{\partial t} = \min_u \left\{ L_t(x, u) + (u + f)^\top \nabla V_t(x) + \frac{1}{2} \text{Tr}(D \nabla^\top \nabla) V_t(x) \right\} \]
Specialise to

\[L_t(x, u) = \frac{1}{2} u(t)^\top Ru(t) + U(x(t), t) \]

Minimisation leads to \(u_t = -R^{-1} \nabla V_t \)

and a nonlinear PDE!

\[
-\frac{\partial V_t(x)}{\partial t} = -\frac{1}{2} (\nabla V_t)^\top R^{-1} (\nabla V_t) + f^\top(x) \nabla V_t + \frac{1}{2} \text{Tr}(D\nabla^\top \nabla)V_t + U(x, t)
\]
Exact Linearisation (Kappen, 2005)

• Assume that $D = R^{-1}$ and using the transformation $V_t(x) = -\ln Z_t(x)$ we get the equation

$$\left\{ \frac{\partial}{\partial t} + \mathcal{L}^\dagger \right\} Z_t(x) = 0$$

with the linear operator

$$\mathcal{L}^\dagger = f^\top \nabla + \frac{1}{2} \text{Tr}(D \nabla^\top \nabla) - U(x,t)$$

• and a path integral representation

$$Z_t(x) = E_{u=0} \left[e^{-\int_t^T U_{\tau}(X(\tau),\tau) \, d\tau} | X(t) = x \right]$$

Now all kinds of inference tricks apply!
Todorov’s solvable MDPs (2006)

$$L_t(x, u) = \sum_{x'} q(x'|x, u) \ln \frac{q(x'|x, u)}{p(x'|x)} + U_t(x)$$

Bellman equation

$$V_t(x) = \min_u \left\{ U_t(x) + \sum_{x'} q(x'|x, u) \ln \left(\frac{q(x'|x, u)}{p(x'|x)} + V_{t+\Delta t}(x') \right) \right\}$$

The controlled transition probabilities:

$$q(x'|x, u) \propto p(x'|x) \ e^{-V_t+\Delta t(x')}$$

with $V_t(x) = -\ln Z_t(x)$ we get the linear equation (Todorov, 2005)

$$Z_t(x) = e^{-U_t(x)} \sum_{x'} p(x'|x) Z_{t+\Delta t}(x')$$
Relation to continuous case

- Short time transition probability

\[p(x', t + \Delta t | x, t) \propto \exp \left(-\frac{1}{2\Delta t} \| \Delta x - f(x) \Delta t \|^2_D \right) \]

as \(\Delta t \to 0 \), with \(\| F \|^2_D = F^\top D^{-1} F \).

- Let \(p_g \) and \(p_f \) short term transition probabilities for Diffusion processes with drift \(g \) and \(f \) with same diffusion \(D \). Then

\[
\int p_g(x', t + \Delta t | x, t) \ln \frac{p_g(x', t + \Delta t | x, t)}{p_f(x', t + \Delta t | x, t)} \, dx' =
\]

\[
\approx \frac{1}{2} \| g(x, t) - f(x, t) \|^2_D \Delta t
\]
The KL divergence for Markov processes

Consider probabilities \(p(X_{0:T}) \), \(q(X_{0:T}) \) over entire paths \(X_{0:T} \).

The total KL divergence

\[
KL [q(X_{0:T})\|p(X_{0:T})] = \int dx_{0:T} \, q(x_{0:T}) \ln \frac{q(x_{0:T})}{p(x_{0:T})}
\]

\[
= \sum_{k=1}^{T-1} \int dx_k \, q(x_k) \int dx_{k+1} \, q(x_{k+1}|x_k) \ln \frac{q(x_{k+1}|x_k)}{p(x_{k+1}|x_k)}
\]

\[
= \sum_{k=1}^{T-1} \int dx_k \, q(x_k) \, KL [q(\cdot|X_k)\|p(\cdot|X_k)]
\]

.... is the expected sum of KLS for transition probabilities.
The global solution

The Kappen / Todorov control problems are of the form:

Minimise the Variational free energy

\[V_t(x) = KL [q(X_{t:T})||p(X_{t:T})] + E_q[\sum_{\tau \geq t} U_\tau(X_\tau, \tau)] \]

for fixed \(X_t = x \) with respect to \(q \). The optimal controlled probability over paths is

\[q^*(X_{t:T}) = \frac{1}{Z_t(x)} p(X_{t:T}) e^{-\sum_{\tau \geq t} U_\tau(X_\tau, \tau)} \]

with the minimal cost (free energy)

\[V_t(x) = -\ln Z_t(x) = -\ln E_p \left[e^{-\sum_{\tau \geq t} U_\tau(X_\tau, \tau)} | X_t = x \right] \]

This looks like a HMM with 'likelihood' \(e^{-\sum_{\tau \geq t} U_\tau(X_\tau, \tau)} \).
Comments

- For HMMs
 \[Z_t(x) = E_p \left[e^{-\sum_{\tau \geq t} U_{\tau}(X_{\tau}, \tau)} | X_t = x \right] \propto P(\text{future data}|X_t = x) \]
 fulfills a **linear backward equation**.

- The posterior = controlled process has transition probabilities
 \[\frac{q(x_{t+1}|x_t)}{p(x_{t+1}|x_t)} = \frac{Z_{t+1}(x_{t+1})}{Z_{t}(x_{t})} e^{-U_t(x_t, t)} \]

- Similar things happen for the continuous case:
 \[\left\{ \frac{\partial}{\partial t} f^\top \nabla + \frac{1}{2} \text{Tr}(D\nabla^\top \nabla) - U(x, t) \right\} Z_t(x) = 0 \]

- Posterior is a diffusion with 'controlled' drift \(u_t(x) = D\nabla \ln Z_t(x) \).
A ’real’ likelihood for continuous time paths

Consider an inhomogeneous Poisson process with rate function $U(X_t)$. Then

$$\Pr \{ \text{No event } \in [0 \ T] \} = e^{-\int_t^T U_s(X_s, s) \, ds}$$
Application: Simulate diffusions with constraints

Wiener process with fixed endpoints $x(t = T) = 0$
Solution

\[u_t(x) = \frac{\partial \ln Z_t(x)}{\partial x} \]

\[\frac{\partial Z_t(x)}{\partial t} + \frac{1}{2} \frac{\partial^2 Z_t(x)}{\partial x^2} = 0 \]

\[Z_t(x) = \delta(x) \]

is solved by

\[Z_t(x) \propto e^{-\frac{x^2}{2(T-t)}} \]

and leads to

\[u_t(x) = -\frac{x}{T-t} \]

for \(0 < t < T \).
Diffusions with constraints on domain: $X(t) \in \Omega$.

1. **Method I:** Kill trajectory if $X(t) \in \partial\Omega$ for some t.

2. **Method II:** Simulate SDEs with drift $u_t(x) = \nabla \ln Z_t(x)$ where

$$Z_t = E \left[e^{-\sum_{t \leq \tau} U_{\tau}(X_{\tau}, \tau)} | X_t = x \right]$$

with $U = \infty$ if $x \notin \Omega$ and $U = 0$ else. Hence

$$\frac{\partial Z_t(x)}{\partial t} + \frac{1}{2} \frac{\partial^2 Z_t(x)}{\partial x^2} = 0$$

with $Z_t(x) = 0$ for $X(t) \in \partial\Omega$.
Possible approximations if we haven’t got KL losses?

- Approximate solution to control problem

\[V_0(x) = \int_{t=0}^{T} E^u \left[\frac{1}{2} u(t)^\top R u(t) + U(x(t), t) \right] | X(0) = x \]

for general matrix \(R \).

- Gaussian measure over paths \(X_0:T \) induced by linear (approximate) posterior SDE (Archambeau, Cornford, Opper & Shawe - Taylor, 2007)

\[dX(t) = \{-A(t)X + b(t)\} dt + D^{1/2}dW \]

as an approximation to

\[dX(t) = \{u(X, T) + f(X)\} dt + D^{1/2}dW \]

Replace \(u(X, T) \approx -A(t)X + b(t) - f(X) \)

→ **nonlinear ODEs** for moments instead of linear PDEs!
Possible extensions to other losses

Simple non KL losses

\[KL(q||p) \rightarrow \alpha KL(q||p_1) - \beta KL(q||p_2) \]

with \(\alpha, \beta > 0 \).

Use iterative method (CCCP style) upper bounding

\[-KL(q||p_2) \leq -E_q[\ln \frac{q_n}{p_2}] \]

where \(q_n \) is the present optimiser.