The Operational Amplifier Abstraction
Review

- MOSFET amplifier — 3 ports

 + -- +
 v_i v_o

 power port

 + -- +
 v_s

 output port

 -

 input port

- Amplifier abstraction

 + -- +
 v_i

 Function of v_i

 -

 v_o

 -

 -

 -

 + -- +
 v_i

 Function of v_i

 -

 -
Can use as an abstract building block for more complex circuits (of course, need to be careful about input and output).

Today

Introduce a more powerful amplifier abstraction and use it to build more complex circuits.

Reading: Chapter 15 from A & L.
Operational Amplifier
Op Amp

More abstract representation:

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Circuit model (ideal):

\[i = 0 \]
\[v^+ \]
\[v \]
\[v^- \]
\[i = 0 \]

\[A \rightarrow \infty \]

i.e.

♦ ∞ input resistance
♦ 0 output resistance
♦ "A" virtually ∞
♦ No saturation
Using it...

(Note: possible confusion with MOSFET saturation!)
Let us build a circuit...

Circuit: noninverting amplifier
Let us analyze the circuit:

Find \(v_O \) in terms of \(v_{IN} \), etc.

\[
v_O = A(v^+ - v^-)
\]

\[
= A \left(v_{IN} - v_O \frac{R_2}{R_1 + R_2} \right)
\]

\[
v_O \left(1 + \frac{AR_2}{R_1 + R_2} \right) = Av_{IN}
\]

\[
v_O = \frac{Av_{IN}}{1 + \frac{AR_2}{R_1 + R_2}}
\]

What happens when “\(A \)” is very large?
Let’s see... When A is large

$$v_O = \frac{Av_{IN}}{I + \frac{AR_2}{R_1 + R_2}} \approx \frac{Av_{IN}}{AR_2} \approx v_{IN} \frac{(R_1 + R_2)}{R_2}$$

Suppose

$A = 10^6$

$R_1 = 9R$

$R_2 = R$

$$v_O = \frac{10^6 \cdot v_{IN}}{1 + \frac{10^6 R}{9R + R}} = \frac{10^6 \cdot v_{IN}}{1 + 10^6 \cdot \frac{1}{10}}$$

$$v_O \approx v_{IN} \cdot 10$$

Gain:

- determined by resistor ratio
- insensitive to A, temperature, fab variations

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Why did this happen?

Insight:

e.g. \(v_{IN} = 5\text{V} \)

Suppose I perturb the circuit...
(e.g., force \(v_O \) momentarily to 12V somehow).

Stable point is when \(v^+ \approx v^- \).

Key: negative feedback \(\rightarrow \) portion of output fed to \(-ve\) input.
 e.g. Car antilock brakes
 \(\rightarrow \) small corrections.
Question: How to control a high-strung device?

Antilock brakes

is it turning?

it's all about control

yes/no feedback

no yes

release apply

v. v. powerful brakes

Michelin disc

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
More op amp insights:

Observe, under negative feedback,

\[v^+ - v^- = \frac{v_O}{A} = \left(\frac{R_1 + R_2}{R_1} \right) v_{IN} \approx 0 \]

\[v^+ \approx v^- \]

We also know

\[i^+ \approx 0 \]
\[i^- \approx 0 \]

→ yields an easier analysis method (under negative feedback).
Insightful analysis method under negative feedback

\[v^+ \approx v^- \]
\[i^+ \approx 0 \]
\[i^- \approx 0 \]

\[v_O = v_{IN} \frac{R_1 + R_2}{R_2} \]

\[v = \frac{v_{IN}}{R_2} \]

\[i = 0 \]

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Question:

\[v_O \approx v_{IN} \]

or

\[v_O = v_{IN} \frac{R_1 + R_2}{R_2} \]

with \(R_1 = 0 \)

\[R_2 = \infty \]
Why is this circuit useful?

Buffer

\[v_O \approx v_{IN} \]

- Voltage gain = 1
- Input impedance = \(\infty \)
- Output impedance = 0
- Current gain = \(\infty \)
- Power gain = \(\infty \)