Generalized Models of Dynastic Cycles

Thilo Gross

Max-Planck-Institut für die Physik komplexer Systeme, Dresden.
The Dynastic Cycle

![Graph showing population changes over centuries.](image)

Peter Turchin: *Historical Dynamics*, 2003
Dynastic Cycle

Rulers → Law → Bandits → Mortality

Taxes

Crime

Production

Farmers → Mortality

Chu and Lee, *J. Pop. Econ* (1994)
The Challenge:

Study large, heterogeneous networks ...

... based on limited information ...

... to extract qualitative information

... on the long-term dynamics.
The Challenge:
Study large, heterogeneous networks...
...based on limited information...
...to extract qualitative information...
...on the long-term dynamics.

Generalized Models

Dynastic Cycle

Correlation Analysis

Bifurcation Diagram

Four-Trophic Food Chain

Equivalence of Food Webs

Mitochondrial TCA-cycle

Niche Model
Cartoon

Gross et al. PRE 73, 016205, 2006.
Differential Equation

\[\dot{X} = P(X) - L(X) \]
Generalized Models

Illustrative Example

Cartoon

\[\dot{X} = P(X) - L(X) \]

Differential Equation

Assume: Steady State

\[X^*, P^* = P(X^*), L^* = L(X^*) \]
Generalized Models

Illustrative Example

Cartoon

Differential Equation

\[\dot{X} = P(X) - L(X) \]

Assume: Steady State

\[X^*, P^* = P(X^*), L^* = L(X^*) \]

Define: Normalized Variables

\[x = \frac{X}{X^*}, p(x) = \frac{P(X)}{P^*}, l(x) = \frac{L(X)}{L^*} \]
Generalized Models

Illustrative Example

Cartoon

Differential Equation

\[\dot{X} = P(X) - L(X) \]

Assume: Steady State

\[X^*, P^* = P(X^*), L^* = L(X^*) \]

Define: Normalized Variables

\[x = \frac{X}{X^*}, \quad p(x) = \frac{P(X)}{P^*}, \quad l(x) = \frac{L(X)}{L^*} \]

Normalized System

\[\dot{x} = \frac{P^*}{X^*} p(x) - \frac{L^*}{X^*} l(x) \]
Generalized Models

Illustrative Example

Cartoon

Differential Equation

\[\dot{X} = P(X) - L(X) \]

Assume: Steady State

\[X^*, P^* = P(X^*), L^* = L(X^*) \]

Define: Normalized Variables

\[x = \frac{X}{X^*}, p(x) = \frac{P(X)}{P^*}, l(x) = \frac{L(X)}{L^*} \]

Identify: Parameters

\[\alpha = \frac{P^*}{X^*} = \frac{L^*}{X^*} \]
Generalized Models

Illustrative Example

Cartoon

Differential Equation
\[\dot{X} = P(X) - L(X) \]

Assume: Steady State
\[X^*, P^* = P(X^*), L^* = L(X^*) \]

Define: Normalized Variables
\[x = \frac{X}{X^*}, p(x) = \frac{P(X)}{P^*}, l(x) = \frac{L(X)}{L^*} \]

Identify: Parameters
\[\alpha = \frac{P^*}{X^*} = \frac{L^*}{X^*} \]

Compute: Jacobian
\[J = \alpha(p'(1) - l'(1)) \]
Generalized Models

Illustrative Example

Cartoon

Differential Equation
\[\dot{X} = P(X) - L(X) \]

Assume: Steady State
\[X^*, P^* = P(X^*), L^* = L(X^*) \]

Define: Normalized Variables
\[x = \frac{X}{X^*}, p(x) = \frac{P(X)}{P^*}, l(x) = \frac{L(X)}{L^*} \]

Identify: Parameters
\[\alpha = \frac{P^*}{X^*} = \frac{L^*}{X^*} \]
\[\phi = p'(1) \]
\[\lambda = l'(1) \]

Compute: Jacobian
\[J = \alpha (\phi - \lambda) \]
Generalized Models

Illustrative Example

Cartoon

Differential Equation

\[\dot{X} = P(X) - L(X) \]

Assume: Steady State

\[X^*, P^* = P(X^*), L^* = L(X^*) \]

Define: Normalized Variables

\[x = \frac{X}{X^*}, \quad p(x) = \frac{P(X)}{P^*}, \quad l(x) = \frac{L(X)}{L^*} \]

Identify: Parameters

\[\alpha = \frac{P^*}{X^*} = \frac{L^*}{X^*} \]

\[\phi = p'(1) \]

\[\lambda = l'(1) \]

Compute: Jacobian

\[J = \alpha(\phi - \lambda) \]
Dynastic Cycle

Chu and Lee, *J. Pop. Econ* (1994)
A generalized model of the dynastic cycle

\[\begin{align*}
\dot{F} &= P(F) - C(F, B) - T(F, R) - M(F) \\
\dot{B} &= C(F, B) - L(R, B) - M(B) \\
\dot{R} &= C(F, B) - M(R)
\end{align*} \]

Gross and Feudel, Phys Rev E 73 016205-14, 2005
The Dynastic Cycle

\[
\begin{align*}
\dot{F} &= P(F) - C(F, B) - T(F, R) - M(F) \\
\dot{B} &= C(F, B) - L(R, B) - M(B) \\
\dot{R} &= C(F, B) - M(R)
\end{align*}
\]

Assume that there is a **steady state**, then we can define

\[
f := \frac{F}{F^*}, \quad p(f) := \frac{P(F)}{P(F^*)}, \quad ...
\]

Gross and Feudel, Phys Rev E 73 016205-14, 2005
Generalized Models

The Dynastic Cycle

\[\dot{f} = \frac{P^*}{F^*} p(f) - \frac{C^*}{F^*} c(f, b) - \frac{T^*}{F^*} t(f, r) - \frac{M^*}{F^*} m(f) \]

\[\dot{b} = \frac{C^*}{B^*} c(f, b) - \frac{L^*}{B^*} l(r, b) - \frac{M^*}{B^*} m(b) \]

\[\dot{r} = \frac{C^*}{R^*} c(f, b) - \frac{E^*}{R^*} e(r) \]

Gross and Feudel, Phys Rev E 73 016205-14, 2005
The Dynastic Cycle

\[\begin{align*}
 \dot{f} &= \alpha_f (\rho - (\beta c - (1 - \beta)t)\rho - (1-\rho)m) \\
 \dot{b} &= \alpha_b (c - \gamma l - (1 - \gamma)m) \\
 \dot{r} &= \alpha_r (c - m)
\end{align*} \]

We have defined the scale parameters

\[\alpha_f = \frac{P^*}{F^*} \] inverse life expectancy of farmers

\[\gamma = \frac{1}{\alpha_b \frac{L^*}{B^*}} \] fraction of bandits that get eventually caught

Gross and Feudel, Phys Rev E 73 016205-14, 2005
Correlation Analysis

Parameter correlations with stability:

- α_y, α_z, β_x, β_y, γ, c_x, c_y, l_y, l_z, m_y, n_x, r_z, s_x, t_x, t_z
Bifurcation Diagram

Gross and Feudel, Phys Rev E 73 016205-14, 2005
Bifurcation Diagram

Gross and Feudel, Phys Rev E 73 016205-14, 2005
Bifurcation Diagram

Complex Dynamics

Gross and Feudel, Phys Rev E 73 016205-14, 2005
Generalized Models
Chaos in Food Chains

Four-Trophic Food Chain

Species 4
Species 3
Species 2
Species 1

Gross, Ebenhöh and Feudel, Oikos 109(1) 135-155, 2005
Chaos in Food Chains

Chaotic Dynamics

Gross, Ebenhöh and Feudel, Oikos 109(1)135-155, 2005

Thilo Gross - Dynamics of Biological Networks - Max-Planck Institut für Physik komplexer Systeme, Dresden
Equivalence of Food Webs
Generalized Models

A Model of Glycolysis

\[
\begin{align*}
\text{ATP} & \xrightarrow{v_8} \text{ADP} \\
\text{Glc} & \xrightarrow{v_1} \text{FBP} \\
2 \text{ATP} & \xrightarrow{v_7} 2 \text{ADP} \\
\text{TP} & \xrightarrow{v_3} \text{NADH} \\
\text{BPG} & \xrightarrow{v_4} \text{NADH} \\
\text{Pyr} & \xrightarrow{v_5} \text{EtOH}
\end{align*}
\]

Steuer, Gross, Selbig & Blasius
PNAS 103 (2006)
Mitochondrial TCA-cycle

Mitochondrial TCA-cycle

No stable stationary states for mass action kinetics
Generalized Models

Mitochondrial TCA-cycle

Pyruvate import is destabilizing

No stable stationary states for mass action kinetics
Mitochondrial TCA-cycle

Weak Saturation of NAD-malic reaction

Strong saturation of malatedehydogenase
Generalized Models

Mitochondrial TCA-cycle

Weak Saturation of NAD-malic reaction

Strong saturation of malatedehydrogenase
Generalized Models

Niche Model Food Webs

Niche Model

Species

Connectance

Lars Rudolf

Thilo Gross - Dynamics of Biological Networks - Max-Planck Institut für Physik komplexer Systeme, Dresden
Generalized Models

Niche Model

Species

35 Billion food webs

Connectance

Niche Model Food Webs

Lars Rudolf

Thilo Gross - Dynamics of Biological Networks - Max-Planck Institut für Physik komplexer Systeme, Dresden
Conclusion

Generalized modeling should be used as a **high-throughput screening tool** before conventional modeling is attempted.

It is particularly useful if **qualitative information** on the **local dynamics** is desired.
Thank you very much for your attention