Optimizing Estimated Loss Reduction for Active Sampling in Rank Learning : DiffLoss

Presented by Pinar Donmez
joint work with Jaime G. Carbonell

Language Technologies Institute
Carnegie Mellon University

ICML ‘08, Helsinki, Finland, June 7 2008
Road Map

- The Challenge: Active Rank Learning
- Related Work
- DiffLoss: New Method for Active Learning for RankSVM and RankBoost
- Results: DiffLoss vs. Margin-Based and Random Sampling
- Conclusion
Active Rank Learning: Why do we care?

- **Challenge:** Labeling for rank learning
 - requires eliciting relative ordering over a set of alternatives
 - costly
 - time-consuming
 - extensive human effort

- **Numerous applications**
 - document retrieval
 - collaborative filtering
 - product rating...
Active Rank Learning: How do we approach?

- **Motivation**
 - an optimal active learner samples those with the lowest estimated expected error on the test set (Roy & McCallum, 2001)
 - impractical for large-scale ranking problems even with efficient re-training

- **Our solution:**
 - estimate this expectation *without any re-training*
 - based on the likelihood of the change of the current hypothesis
 - greater chance to learn the true hypothesis faster
Related Work

- **Margin-based Sampling** (Brinker, 2004; Yu, 2005)
 - margin := minimum difference of scores between two instances in the ranked order
 - selects the examples with minimum margin
 - pro: general, and simple to implement
 - con: similar instances with the same rank label may have minimum margin

- **Divergence-based Sampling** (Amini et al, 2006)
 - similar to query-by-committee sampling
 - selects instances at which two ranking functions maximally disagree
 - pro: theoretical justification
 - con: effective only when provided with a sufficiently large initial labeled set
DiffLoss for RankSVM

- Assume $\vec{x} \in U$ is added to training set with $y \in Y$
- Total loss on pairs that include \vec{x} is:

$$D(\vec{x}, \vec{w}) = \sum_{j=1}^{n} \left[1 - z_j \langle \vec{w}, \vec{x}_j - \vec{x} \rangle \right]_+$$

Label for the difference vector $\vec{x}_j - \vec{x}$: +1 if $\vec{x}_j \succ \vec{x}$ and -1 otherwise

Linear RankSVM solution:
$$f(\vec{x}) = \langle \vec{w}, \vec{x} \rangle$$

- \vec{x}_j's: training instances with a different label than y
- n is the # of such instances
Objective function to be minimized then becomes:

\[
\min_{\vec{w}} \left\{ \lambda \|\vec{w}\|^2 + \sum_{k=1}^{K} \left[1 - z_k \langle \vec{w}, \vec{x}_k^1 - \vec{x}_k^2 \rangle \right]_+ + D(\vec{x}, \vec{w}) \right\}
\]

Assume the current ranking function is \(f(\vec{x}) = \langle \vec{w}^*, \vec{x} \rangle \)

There are two possible cases:

\[
\vec{w}^* = \arg\min_{\vec{w}} D(\vec{w}, \vec{x}) \quad \text{or} \quad \vec{w}^* \neq \arg\min_{\vec{w}} D(\vec{w}, \vec{x})
\]

Assume \(\hat{\vec{w}} = \arg\min_{\vec{w}} D(\vec{w}, \vec{x}) = \min_{\vec{w}} \sum_{j=1}^{n} \left[1 - z_j \langle \vec{w}, \vec{x}_j - \vec{x} \rangle \right]_+ \)

Derivative w.r.t \(\vec{w} \) at a single pair

\[
\Delta \vec{w}_j = \begin{cases}
0 & \text{if } z_j \langle \vec{w}, \vec{x}_j - \vec{x} \rangle \geq 1 \\
-z_j (\vec{x}_j - \vec{x}) & \text{if } z_j \langle \vec{w}, \vec{x}_j - \vec{x} \rangle < 1
\end{cases}
\]
DiffLoss for RankSVM Final Selection

- Substitute \vec{w}^* in

 to estimate $\|\vec{w}^* - \hat{\vec{w}}\| = \|\Delta \hat{\vec{w}}\|

- Magnitude of the total derivative

 $$\|\Delta \hat{\vec{w}}\|_y = \sum_j \|\Delta \hat{\vec{w}}_j\| = \sum_{j=1}^n \begin{cases} 0 & \text{if } z_j \langle \vec{w}^*, \vec{x}_j - \vec{x} \rangle \geq 1 \\ \| - z_j (\vec{x}_j - \vec{x}) \| & \text{if } z_j \langle \vec{w}^*, \vec{x}_j - \vec{x} \rangle < 1 \end{cases}$$

- $\|\Delta \hat{\vec{w}}\|_y$: ability of \vec{x} to change the current ranker if added into training

- Sample $\vec{x}^* = \arg\max_{\vec{x} \in U} \sum_{y \in Y} \hat{P}(y | \vec{x}) \|\Delta \hat{\vec{w}}\|_y$
DiffLoss for RankBoost

- Estimate how the current ranker would change if \(\vec{x} \in U \) was in the training set.

- Estimate by the ranking loss on the new pairs that include \(\vec{x} \in U \).

- Ranking loss w.r.t \(D_{T+1} \) is (Freund et al., 2003):

\[
D_{T+1}(\vec{x}^1, \vec{x}^2) = D_1(\vec{x}^1, \vec{x}^2) \frac{\exp(H(\vec{x}^2) - H(\vec{x}^1))}{\prod_t Z_t}
\]
DiffLoss for RankBoost Final Selection

- Ranking loss on the new pairs:
 \[
 \Delta L(\vec{x}, y = 1) = \sum_{\vec{x}^j, \vec{x}} \frac{\exp(H(\vec{x}^j) - H(\vec{x}))}{\prod_t Z_t} I(H(\vec{x}^j) \geq H(\vec{x}))
 \]

- \(\Delta L(\vec{x}, y = 1) \) estimates the change in the current ranker if \(\vec{x} \in U \) was sampled

- Sample the instance with the highest loss differential:
 \[
 \vec{x}^* = \arg\max_{\vec{x} \in U} \left\{ \hat{P}(y = 1 \mid \vec{x}) \Delta L(\vec{x}, y = 1) + \hat{P}(y = -1 \mid \vec{x}) \Delta L(\vec{x}, y = -1) \right\}
 \]
Data & Settings

- TREC 2003 and TREC 2004 topic distillation datasets in LETOR
 - Binary relevance
- Start with 16 docs/query (1 relevant & 15 non-relevant)
- Select 5 docs/query at each iteration
- 25 iterations

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Query size</th>
<th>Docs/Q</th>
<th>%Rel</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD2003</td>
<td>50</td>
<td>983.42</td>
<td>1%</td>
</tr>
<tr>
<td>TD2004</td>
<td>75</td>
<td>988.93</td>
<td>0.6%</td>
</tr>
</tbody>
</table>
Performance Measures

- **MAP (Mean Average Precision)**
 \[AP = \frac{\sum_{n=1}^{N} (P(r) \times rel(r))}{\# \text{ total relevant documents for this query}} \]
 - MAP is the average of AP values for all queries

- **NDCG (Normalized Discounted Cumulative Gain)**
 - The impact of each relevant document is discounted as a function of rank position
 \[NDCG@n = Z_n \sum_{j=1}^{n} \frac{2^{r(j)} - 1}{\log(1+j)} \]
Results on TREC03

* Horizontal line indicates the performance if all the data is used as the training set.
Results on TREC04
Results at a Glance

- **DiffLoss:**
 - significantly superior over the entire operating range ($p<0.0001$).
 - achieves 30% relative improvement over the margin-based sampling on TREC03.
 - using RankSVM reaches the optimal performance after ~10 rounds.
 - using RankBoost reaches 90-95% of the optimal performance after ~10 rounds.
Conclusion

- A new active sampling framework for rank learning
- Sample instances with the largest expected loss differential
- Significantly faster learning rate compared to baselines
- In the future, we plan to focus on
 - Sampling by directly optimizing performance metrics
 - Automatically determining when to stop sampling
THE END!

Thanks!