Empirical Bernstein Stopping

Volodymyr Mnih1, Csaba Szepesvári1, Jean-Yves Audibert2

1Department of Computing Science, University of Alberta
2Certis - Ecole des Ponts, Willow - ENS / INRIA

July 8, 2008
ICML 2008
Outline

- How to design efficient stopping rules.
- Two stopping problems.
- Two inefficient algorithms.
- Two efficient algorithms.
 - Variance estimation is the key.
- Theoretical and experimental results.
Problem I

- Given two poker players decide which one is better.
 - Make them play a lot of hands.
 - After how many hands can we determine the better player?

- Many similar problems.
 - Does a weak learner have error below 0.5?
 - Is an estimated gradient close to the true gradient?
More formally

- Let X_1, X_2, X_3, \ldots be $i.i.d$, bounded random variables with mean $\mu \neq 0$, variance σ^2, and range R.
 - X_i can be payoff for Player 1 for the i^{th} hand.
 - If $\mu > 0$ Player 1 is better.
 - If $\mu < 0$ Player 2 is better.

- A stopping rule observes X_t at time t and decides whether to stop or keep sampling. After stopping an estimate is returned.

- For the poker problem, we want a stopping rule that determines the sign of μ with high probability.
\((\epsilon, \delta)\)-approximations

- Usually we also want to know by how much the stronger player is better.

- We seek a stopping rule that, given \(\epsilon\) and \(\delta\), returns an estimate \(\hat{\mu}_T\) satisfying

\[
P[|\hat{\mu}_T - \mu| \leq \epsilon |\mu|] \geq 1 - \delta.
\]

- We refer to \(\hat{\mu}_T\) as an \((\epsilon, \delta)\)-approximation.

- The stopping rule should stop as early as possible while returning a \((\epsilon, \delta)\)-approximation.
Basic Stopping Criterion

- How can we find an \((\epsilon, \delta)\)-approximation?
 - Let \(d_t\) be a sequence that sums to \(\delta\).
 - Let \(c_t\) be half the width of a \(1 - d_t\) confidence interval for \(\mu\), then event
 \[
 \mathcal{E} = \{ |\bar{X}_t - \mu| \leq c_t, \, t \in \mathbb{N}^+ \}
 \]
 occurs with probability at least \(1 - \delta\).
 - Stop when \(c_t \leq \epsilon(|\bar{X}_t| - c_t)\).
 - Return \(\bar{X}_t\).

- Nonmonotonic Adaptive Sampling (Domingo et al. 1999) uses Hoeffding’s inequality to define
 \[
 c_t = R \sqrt{\frac{\log(2/d_t)}{2t}}.
 \]
Nonmonotonic Adaptive Sampling

- **One line proof:**
 \[
 |\bar{X}_t - \mu| \leq c_t < \epsilon(|\bar{X}_t| - c_t) \leq \epsilon|\mu|
 \]

- **Theorem [Domingo et al., 1999]:** If \(T \) is the stopping time of NAS, then for \(X \) with range \(R \), there exists a universal constant \(c \) such that
 \[
 \mathbb{E}[T] \leq c \cdot \frac{R^2}{\mu^2 \epsilon^2} \cdot \left(\log \frac{1}{\delta} + \log \frac{1}{\epsilon|\mu|} \right).
 \]

- Where is \(\sigma^2 \)?
Nonmonotonic Adaptive Sampling

- One line proof:

\[
\bar{X}_t - \mu \leq c_t < \epsilon (|\bar{X}_t| - c_t) \leq \epsilon |\mu|
\]

- Theorem [Domingo et al., 1999]: If \(T \) is the stopping time of NAS, then for \(X \) with range \(R \), there exists a universal constant \(c \) such that

\[
\mathbb{E}[T] \leq c \cdot \frac{R^2}{\mu^2 \epsilon^2} \cdot \left(\log \frac{1}{\delta} + \log \frac{1}{\epsilon |\mu|} \right).
\]

- Where is \(\sigma^2 \)?
Nonmonotonic Adaptive Sampling

One line proof:

\[|\bar{X}_t - \mu| \leq c_t < \epsilon(|\bar{X}_t| - c_t) \leq \epsilon|\mu| \]

Theorem [Domingo et al., 1999]: If \(T \) is the stopping time of NAS, then for \(X \) with range \(R \), there exists a universal constant \(c \) such that

\[\mathbb{E}[T] \leq c \cdot \frac{R^2}{\mu^2 \epsilon^2} \cdot \left(\log \frac{1}{\delta} + \log \frac{1}{\epsilon|\mu|} \right). \]

Where is \(\sigma^2 \)?
Nonmonotonic Adaptive Sampling

One line proof:

$|X_t - \mu| \leq c_t < \epsilon(|X_t| - c_t) \leq \epsilon|\mu|$

Theorem [Domingo et al., 1999]: If T is the stopping time of NAS, then for X with range R, there exists a universal constant c such that

$\mathbb{E}[T] \leq c \cdot \frac{R^2}{\mu^2 \epsilon^2} \cdot \left(\log \frac{1}{\delta} + \log \frac{1}{\epsilon|\mu|} \right).$

Where is σ^2?
The AA Algorithm

- Dagum, Karp, Luby, and Ross (1999).
- AA algorithm for X in $[0, R]$.
 - Obtain $\tilde{\mu}$, an approximation of μ.
 - Obtain $\tilde{\sigma}^2$, an approximation of σ^2.
 - Draw $c \cdot \max(\frac{\tilde{\sigma}^2}{\epsilon^2 \tilde{\mu}^2}, \frac{1}{\epsilon \tilde{\mu}}) \log(2/\delta)$ expected number of samples and return the sample mean as $\hat{\mu}$.
 - For appropriate c, $\hat{\mu}$ is an (ϵ, δ)-approximation of μ.

The AA Algorithm - Bounds

- **Theorem [Dagum et al., 1995]:** If T is the number of samples taken by AA, then exists $c > 0$ such that for all X

 $$ \mathbb{E}[T] \leq C \cdot \max \left(\frac{\sigma^2}{\epsilon^2 \mu^2}, \frac{R}{\epsilon \mu} \right) \cdot \log \frac{2}{\delta}. $$

- R^2 is replaced by σ^2 and R. Much better than NAS.
The AA Algorithm - Bounds

- **Theorem [Dagum et al., 1995]:** If T is the number of samples taken by AA, then exists $c > 0$ such that for all X

\[
\mathbb{E}[T] \leq C \cdot \max \left(\frac{\sigma^2}{\epsilon^2 \mu^2}, \frac{R}{\epsilon \mu} \right) \cdot \log \frac{2}{\delta}.
\]

- R^2 is replaced by σ^2 and R. Much better than NAS.

- **Theorem [Dagum et al., 1995]:** Any stopping rule that returns an (ϵ, δ)-approximation must take a number of samples the order of

\[
\max \left(\frac{\sigma^2}{\epsilon^2 \mu^2}, \frac{R}{\epsilon \mu} \right) \cdot \log \frac{2}{\delta}.
\]
Extending \mathcal{AA}

- \mathcal{AA} only works for nonnegative X.
 - Cannot be applied to the poker problem.

- Can we easily extend it to the bounded case?
 - Shifting X to be nonnegative is not what we want.
 - Taking the absolute values of X is not what we want.
 - \mathcal{AA} heavily relies on monotonicity of partial sums.

- No trivial extension to the bounded case seems possible.
EBStop (I)

- EBStop builds on the basic stopping criterion.
- First improvement: Construct \(\{c_t\} \) with empirical Bernstein bounds.
- The empirical Bernstein bound (Audibert, Munos, Szepesvári, 2007) states that with probability at least \(1 - \delta \),

\[
|\overline{X}_t - \mu| \leq \sigma_t \sqrt{\frac{2 \log (3/\delta)}{t}} + \frac{3R \log (3/\delta)}{t}.
\]

- We also use \(d_t = \frac{c_\delta}{t^p} \) for \(p > 1 \).
Second improvement: We can stop as soon as $c_t \leq \epsilon |X_t|$ instead of $c_t \leq \epsilon (|X_t| - c_t)$.

Let $LB(t) = \max(0, |X_t| - c_t)$ and $UB(t) = |X_t| + c_t$.

Stop when $(1 + \epsilon)LB(t) \geq (1 - \epsilon)UB(t)$.

Return $\hat{\mu} = \text{sgn}(X_t) \cdot 1/2 \cdot [(1 + \epsilon)LB(t) + (1 - \epsilon)UB(t)]$.

The stopping conditions are equivalent and $\hat{\mu}$ is an (ϵ, δ)-approximation of μ.
Theorem: If \mathcal{T} is the stopping time of EBStop, then there exists a universal constant C such that

$$\mathbb{E}[T] \leq C \cdot \max \left(\frac{\sigma^2}{\epsilon^2 \mu^2}, \frac{R}{\epsilon |\mu|} \right) \left(\log \frac{1}{\delta} + \log \frac{1}{\epsilon |\mu|} \right)$$

Hence, EBStop comes close to AA’s bound, but only needs bounded X_i.

Can we reduce or get rid of the $\log \frac{1}{\epsilon |\mu|}$ term?
EBGStop - EBStop with Geometric Sampling

- Check the stopping condition only after $\lceil \beta^k \rceil$ samples for $k \in \mathbb{N}^+$ and some $\beta > 1$.
- Using fewer deviation bounds leads to tighter confidence intervals and earlier stopping.
EBGStop - EBStop with Geometric Sampling

- Check the stopping condition only after $\lceil \beta^k \rceil$ samples for $k \in \mathbb{N}^+$ and some $\beta > 1$.
- Using fewer deviation bounds leads to tighter confidence intervals and earlier stopping.
- If T is the stopping time of EBGStop, then there exists a universal constant C such that

$$
\mathbb{E}[T] \leq C \cdot \max \left(\frac{\sigma^2}{\varepsilon^2 \mu^2}, \frac{R}{\varepsilon |\mu|} \right) \left(\log \frac{1}{\delta} + \log \log \frac{1}{\varepsilon |\mu|} \right)
$$

- We can also achieve this bound while testing after every t.
Results - Effect of Variance

- Stopping times for finding \((0.01, 0.1)\)-approximations of averages of \(n\) Uniform\((0,1)\) random variables.
Results - Bernoulli Random Variables

- Stopping times for finding (0.1, 0.1)-approximations of Bernoulli means.
Problem II - Picking the winner

- You have a number of predictors.

- Want to decide which one is the best quickly.
 - Test each one on a holdout set.
 - Pick the one with the highest accuracy/average reward/likelihood.

- It is possible to save a lot of time by using a stopping rule.
 - Stop evaluating a predictor as soon as it is clear that it is bad.
More formally - Racing algorithms

- Given: M options, N data points, confidence parameter $\delta > 0$.

- At time t
 - Receive data point D_t.
 - Can choose to compute $X_{m,t}$, the payoff for option m on D_t.
 - Can choose to discard any option(s).
 - $\{X_{m,t}\}_{t \geq 1}$ are i.i.d with mean μ_m and range R.

- A racing algorithm terminates when
 - It has found the best option with probability at least $1 - \delta$, or
 - It has received all N data points.

- The goal is to keep the best option and compute much fewer than MN payoffs.
Hoeffding Races (Maron and Moore, 1994)

- At time t build $1 - \delta/MN$ confidence interval for each μ_m using Hoeffding’s inequality.

$$[-X_{m,t} - R\sqrt{\frac{\log(2MN/\delta)}{2t}}, X_{m,t} + R\sqrt{\frac{\log(2MN/\delta)}{2t}}]$$

- If the upper confidence of option j is smaller than the lower confidence of any option, discard option j.

Illustration:
Hoeffding Races - Bounds

Theorem: The number of samples taken by the Hoeffding Race algorithm is bounded from above by

\[
\sum_{\mu_m < \mu_{m^*}} \left[\frac{8R^2 \log(2MN/\delta)}{(\mu_m - \mu_{m^*})^2} \right].
\]

- Dependence on R^2 and no σ^2.
Empirical Bernstein Races

- Simple improvement: Use empirical Bernstein bounds instead of Hoeffding bounds to build confidence intervals.

- **Theorem:** The number of samples taken by the EBRace algorithm is bounded from above by

 \[
 \sum_{\mu_m < \mu_{m*}} \left[\frac{8(\sigma_m + \sigma_{m*})^2 + 18R(\mu_{m*} - \mu)}{(\mu_{m*} - \mu_m)^2} \log(4MN/\delta) \right].
 \]

- Dependence on R^2 traded for dependence on R and σ_m^2.
Racing Algorithms - Results

- Comparison on the task of selecting the best k for nearest neighbor regression and classification through leave-one-out cross-validation.
- Started with 11 models/values of k.
- We show percentage of tests saved over the MN required by brute force and the number of models left.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Hoeffding</th>
<th>EB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARCOS</td>
<td>0.0% / 11</td>
<td>44.9% / 4</td>
</tr>
<tr>
<td>Coverture2</td>
<td>14.9% / 8</td>
<td>29.3% / 5</td>
</tr>
<tr>
<td>Local</td>
<td>6.0% / 9</td>
<td>33.1% / 6</td>
</tr>
</tbody>
</table>
Conclusions

- Empirical Bernstein bounds can be used to design efficient stopping rules.

- When used in place of Hoeffding’s inequality:
 - Linear dependence on R^2 in sample complexity is reduced to a linear dependence on σ^2 and R.
 - Can offer huge computational savings in practice.