Induction of Node Label Controlled Graph Grammar Rules

Hendrik Blockeel \(^1,2\)
Siegfried Nijssen \(^1\)

\(^1\) Katholieke Universiteit Leuven
\(^2\) Leiden Institute of Advanced Computer Science
Overview

- Motivation
 - Limitations of Subdue-like grammar induction

- Introduction to node label controlled graph grammars (NLC-GGs)

- An algorithm for learning NLC-GG rewrite rules from graphs

- Conclusions & future work
Motivation

- Grammar induction is a popular approach to learning from strings, and a well-studied problem.
- Induction of graph grammars might be an interesting approach to learning from graphs.
- While graph grammars are well studied (a lot of literature exists on them), there seems to be very little work on learning such grammars.
- Yet, learning such grammars might be useful:
 - Understanding common structure of graphs.
 - Active learning: generate new graphs.
 - Studying dynamic behavior of networks.
 - ...
Existing work on learning graph grammars

- Perhaps best known in the learning/mining community: *Subdue* family of algorithms (Holder, Cook, et al., 1994-)
 - Finds frequently occurring subgraph G
 - Compresses graphs by replacing G with a node N and adding *rewrite rule* N -> G
 - Set of rewrite rules can be seen as a graph grammar
 - Heuristic for finding good grammars: maximal compression of graphs
Disadvantage of Subdue

- Disadvantage 1: *compression is lossy*
 - From the point of view of minimal description length (MDL), this is not very nice

- Disadvantage 2: not well in line with existing, well-studied, graph grammars

- Goal of this work is to remove these disadvantages
Theory on graph grammars

- How to define a “graph grammar”?
- Many different methods have been proposed
- Often, on a high level, two kinds of graph grammars are distinguished:
 - **Hyperedge replacement** grammars
 - Rewrite rule replaces (hyper)edge by new graph
 - **Node replacement** grammars
 - Rewrite rule replaces node by new graph
- Here we will consider *node replacement grammars*
NLC graph grammars

- **Node Label Controlled** graph grammars (see, e.g., Engelfriet & Rozenberg, 1991)
- = node replacement grammars with rules of the form:

\[N \rightarrow G / E \]

Replace any node with label N by G, connecting G to N’s neighborhood according to the embedding rules listed in E. *Embedding rules are based on node labels.*
Example NLC-GG rule

\[N \rightarrow b_{\{a,b\}, \{b,c\}} \]
Example NLC-GG rule

\[N \rightarrow b \quad / \quad \{(a,b), (b,c)\} \]
Another example

\[N \rightarrow \begin{array}{c}
\text{N} \\
\text{N} \\
\end{array} / \{(a,b), (b,a)\} \]

\[N \rightarrow \varepsilon / \{\} \]

\[N \rightarrow \begin{array}{c}
a \\
b \\
\end{array} \rightarrow \begin{array}{c}
a \\
b \\
a \\
b \\
\end{array} \rightarrow \ldots \rightarrow \begin{array}{c}
a \\
a \\
b \\
b \\
\end{array} \rightarrow \begin{array}{c}
b \\
a \\
b \\
b \\
b \\
a \\
b \\
\end{array} \]
Research Question

- Question: can we adapt the Subdue operator so that it learns rules of the form $N \rightarrow G / E$ (instead of $N \rightarrow G$) ?

 - This would be a first step towards learning “real” graph grammars (i.e., better in line with existing graph grammar theory).
Task: learn rewrite rule

- Subdue learns a rule $N \rightarrow G$ that leads to maximal compression

- Our goal: Learn a rule $N \rightarrow G / E$ that leads to maximal compression
 - Find a large G that occurs frequently in the graph, and a set E that is compatible with how all these occurrences are embedded in the surrounding graph
Substitutability

Observation 1: given a single occurrence of some subgraph G, there may not exist a set of embedding rules E such that G could be generated and embedded by a rule $N \rightarrow G / E$

We say that a subgraph G is substitutable if such an E does exist

– In that case, we can substitute some node N for G, and add the rule $N \rightarrow G / E$
No ruleset E exists such that the encircled graph could have been generated from a node N through $N \rightarrow G / E$:

1) 3 nodes (a,a,d) must have been in the environment of N
2) Since we have an edge (b,a), (b,a) must have been in E
3) But then, b should have been connected also to the other a node
Compatibility

- Observation 2: for 2 substitutable occurrences of the same subgraph G, there may or may not exist a single rule $N \rightarrow G / E$ that could have generated both of them.

- We say that the occurrences are compatible if such a rule does exist.
Compatibility: example

\[E \supseteq \{(a,a), (b,a), (c,d)\} \]

\[E \supseteq \{(b,b), (c,d)\} \]

\[E \supseteq \{(a,a), (b,a), (b,b), (c,d)\} \]
Compatibility: example

E \supseteq \{(a,a), (b,a), (c,d)\}
E \not\supset \{(c,a), (a,d), (b,d)\}
E \supseteq \{(a,a), (b,a), (b,b), (c,d)\}; E \not\supset \{(a,b), (a,d), (b,d), (c,a), (c,b)\}

Rule-Inset (must be in E)

Rule-outset (must not be in E)
Determining E

Auxiliary concepts:
- Given $G \subseteq G'$, and assuming G was generated by some rule $N \rightarrow G / E$:
 - The *Node-InSet* of G, $NIS(G)$, contains all nodes in G' – G that must have been in the neighborhood of N
 - The *Rule-InSet* $RIS(G)$, also denoted I, contains all couples (l_1, l_2) that must have been in E
 - The *Rule-OutSet* $ROS(G)$, also denoted O, contains all couples (l_1, l_2) that cannot have been in E
- We have $I \subseteq E \subseteq L^2-O$ (with L set of all labels)
1: Determining NIS

- The NIS of a graph G equals the set of all nodes outside G connected to it
 - Each node connected to G must have been in the environment of N (otherwise G couldn’t have been connected to it)
 - For each node not connected to G, either:
 - 1) We know it was not in N’s environment
 - Or 2) we don’t know whether it was or wasn’t
 - (Proof: if node x is not connected to G, any E that yields this embedding from N connected to x would yield the same embedding from N not connected to x)
2: Determining I

- I is the set of couples \((a,b)\) such that \(E\) must contain \((a,b)\)

- **I contains \((a,b)\) if and only if a node with label \(a\) in \(G\) is connected to a node with label \(b\) outside \(G\)**

 - **If:** if edge \((a,b)\) exists, \((a,b)\) must have been in \(E\), otherwise this edge couldn’t have been generated

 - **Only if:** if no edge \((a,b)\) exists, then for any \(E\), \(E - \{(a,b)\}\) would have given the same embedding; hence, \((a,b)\) not in \(I\)
3: Determining O

- O is the set of couples (a,b) that cannot possibly be in E.

- O contains (a,b) if and only if there is an a-node in G and a b-node in $\text{NIS}(G)$ that are not connected.
 - If: if (a,b) were in E, then the a-node and the b-node would have been connected, since the b-node is in $\text{NIS}(G)$. Since they are not connected, (a,b) must not be in E.
 - Only if: O contains (a,b) implies that E cannot contain (a,b), i.e., there is a contradiction if (a,b) is in E. Such a contradiction only occurs if there is an a-node in G and a b-node in $\text{NIS}(G)$ such that a and b are not connected.
Thus, given G (subgraph of G’):
- Can determine NIS(G) (= nbh(G))
- Can determine I (= \{(l(x), l(y)) | x \in G \land y \in nbh(G) \land (x, y) \in G' \})
- From NIS(G), can determine O (= \{(l(x), l(y)) | x \in G \land y \in nbh(G) \land (x, y) \notin G' \})
- E is a possible embedding rule that might have generated this graph from a graph containing N, using the rule N \rightarrow G / E, if and only if I \subseteq E \subseteq L^2-O

If I and O overlap, there are no E’s fulfilling the above condition, hence G is not substitutable
Sets of occurrences

- Take a set of subgraphs G_i (or “occurrences G_i of some subgraph G”), with corresponding I_i and O_i
- E is a possible embedding for all G_i if and only if
 - for all i: $I_i \subseteq E$; in other words, $\bigcup_i I_i \subseteq E$
 - for all i: $E \subseteq L^2 - O_i$; that is, $E \subseteq L^2 - \bigcup_i O_i$
- \Rightarrow can define the RIS and ROS of a set of subgraphs (or occurrences of a single subgraph) as follows:
 - $\text{RIS}(S) = \bigcup_{G \in S} \text{RIS}(G)$
 - $\text{ROS}(S) = \bigcup_{G \in S} \text{ROS}(G)$
- If $\text{RIS}(S) \cap \text{ROS}(S) \neq \emptyset$, there are incompatible graphs in S
Maximal compatible subset

- Given a set of occurrences $S = \{G_1, \ldots, G_n\}$, find a maximal subset S' such that S' is compatible.

Solution:
- Call two occurrences G_i and G_j substitution-compatible iff they do not overlap nor touch, and are compatible.
- Construct graph with the G_i as nodes and an edge (G_i, G_j) iff G_i and G_j are substitution-compatible.
- Maximal compatible subset = maximal clique in this graph.
 - Indeed, a set of n occurrences is compatible iff all these occurrences are pairwise compatible.
- Can use existing algorithms for maximal clique finding.
Example
Subdue operator successfully upgraded to learning NLC grammar rules

Computations seem feasible in practice

- Computational bottleneck is maximum clique problem, which frequent graph miners already handle with reasonable efficiency
Future work

- Learn recursive rules
 - Currently only non-recursive rules are handled
 - To learn recursive rules, should drop “do not touch” criterion in substitution-compatibility
 - Can it always be dropped safely?
- Extend to ed-NCE grammars
 - Like NLC grammars, but: directed edges, edge labels, E contains (x,a) where x is node in G and a is label in neighborhood
 - Shown to be a very powerful (expressive) class of grammars
- Find interesting applications