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 Why feature selection?

« Submodular selection criteria

* CORK, a novel feature selection criterion

* Inclusion of CORK into gSpan

* Experimental validation

 Summary and outlook
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 Two-class problem:

* Collection of graphs
* Predict class label from graph topology

e Current solutions:

* Pattern-based learning (subgraphs, paths, circles)

 Graph kernel approaches (random walk, pattern
based approaches)

* Nested approaches (feature generation adapted to
the dataset)
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* Frequent Subgraphs
* Can be efficiently enumerated (gSpan, FSG, MoSS)

e TN

* They also contain

* |Insignificant features

 Redundant features, already covered by other
substructures

* Potentially exponentially many
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* |dentify the most discriminative subgraphs

« Set g,

C # (total feature set), s.t.

T, = argmax £(S)
s0%

according to information criterion f.
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Approaches
 Complete subset enumeration and test (Wrapper)

* Ranker selection (assuming feature independence)

* Greedy approaches
 Backward Elimination vs. Forward Selection

* Nested approaches

* Feature selection performed in combination with
feature generation

July 4th 2008 Combining Near-Optimal Feature Selection with gSpan



A D

. | Institute for
! Computer
Science -
LUDWIG- m
MAXIMILIANS- Su b Od u Iarlty Database and |f4
I_Mu UNIVERSITAT Information |~
MUNCHEN | Systems

- —

A note on the Budgeted Maximization of

PrOOf by Krause and GUESt”n Submodular Functions. CMU 2005

Submodular decision function Guarantee of
Greedy Forward Selection Y
() (] —]—)fw‘opt)
e
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A note on the Budgeted Maximization of

PrOOf by Krause and GUESt”n Submodular Functions. CMU 2005

Submodular decision function Guarantee of
Greedy F d Selecti Y
() (] —]—)fw’opt)
e

set function f: ¥ - R

f is submodular <

S050F,s0F A

AsO{sh - A$) = Ag0{s) - (),
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A note on the Budgeted Maximization of

PrOOf by Krause and GUESt”” Submodular Functions. CMU 2005

Submodular decision function Guarantee of
Greedy F d Selecti Y
IIIEEMEMHHEEHMI"beUZb_l)ﬂjw)
e

set function f: ¥ - R

f is submodular <

\

‘sO0s0%,s09F -

flsO{s}) - f($) = g O {s}) - f(5), f(S) = area(S)
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A note on the Budgeted Maximization of

PrOOf by Krause and GUESt”” Submodular Functions. CMU 2005

Submodular decision function Guarantee of
Greedy Forward Selection Y
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set function f: ¥ - R

f is submodular <
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AsO{sh - f($) = (50 {s}) - f(&), f(S) = area(S)

July 4th 2008 Combining Near-Optimal Feature Selection with gSpan 10



LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

L | Institute for
Computer
CORK s
Database and |
: =
Information |
4| Systems !

/
a

Correspondence:

A pair of instances /7, j O Dataset D with
class(/) + class(j) is called a correspondence in a
feature set 5, if / and j have the same values for &

Correspondence-based Quality Criterion (CORK):

g(s)= (=1) = "“number of correspondences in §”

From now:
use CORK for binary feature values {0, 1}.
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Correspondence-based Quality Criterion (CORK):

g(s)= (—1) x “number of correspondences in §”

A . # “feature S = 0 in class A® (# mis—-matches)

SO
As: # "feature S = 1 in class A" (# matches)
2-class dataset
A B
q({S)) = _(ASO'BSO+A5]'BS]) ala,|a,|b|b,|b,
gs,lhjrfo]1]o]o
ESZ 1101011 10(0O
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Correspondence-based Quality Criterion (CORK):

g(s)= (—1) x “number of correspondences in §”

A . # “feature S = 0 in class A® (# mis—-matches)

S50
As: # "feature S = 1 in class A" (# matches)
2-class dataset
A B
q({S)) = _(ASO'BSO+A5]'BS]) ala,|la,| b, |b,|b,

11110111010
5111010111010

g((s,))= —(1-2+2:1)= -4

Features
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Correspondence-based Quality Criterion (CORK):

g(s)= (—1) x “number of correspondences in §”

A . # “feature S = 0 in class A® (# mis—-matches)

S50
As: # "feature S = 1 in class A" (# matches)
2-class dataset
A B
q(iS}) = _(ASO'BSO+A5]'BS]) ala,|alb,|b,]|b,
g((s,))= —(1-242-1)= -4 g 50111101 ({0]0
g(ls,))= —(2.2+1-1)= =5 2 s,J1|{o]o]|1]0]|0
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A B
SHh=—(A.-B. +A-B
q({S}) ( s, ]50 s, 5]) alalalb, |b,|b
g((s,T)H=— D As 1 -Bs ;| S Lo 10 [0
i, j=0
s;2J1{oJoj1]0]f0

Histogram over equivalence classes for
the possible feature combinations

For M features: 2" possible equivalence classes

0,0 0,1 1,0 1,1

g(is, s,}))=—\1-2+0-0+1-0+1-1)=-3
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SUsU&, sF:
Improvement of & - must also improve §

Improvement 2 remove a correspondence
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Improvement of & - must also improve §
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f(sO{s}) - f(8) = A(F5O{sph - [(F)
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SUsU&, sF:
Improvement of & - must also improve §

Improvement 2 remove a correspondence

A B A

D 3 D

S {S}SD{S}-_
T -fﬂ{s}-
5 s

f(sO{s}) - f(8) = A(F5O{sph - [(F)
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Yan, X. & Han, J.: gSpan: Graph-based sub-structure pattern mining. Proc. ICDM 2002

 DFS Code Tree

 Efficient branch-and-bound

* Frequency bound
* Minimality bound of DFS Code
2-edge (J ‘ "+ *Worst-case runtime: exponential

pruned

frequent: _ _ _
,,f{,ned * For any parent-child relationship
in the search tree: parent = child

July 4th 2008 Combining Near-Optimal Feature Selection with gSpan 19
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*Let parent S £ child T be
frequent subgraphs

*From S to 7, we can only loose
matching subgraph embeddings
but never gain additional
matches. (A; A, AB; 2B, )

frequent: * The maximal value of g (| T }) is
pruned :
reached, when either all matches

in A or all matches in B are lost.
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*Let parent S £ child T be
frequent subgraphs

*From S to 7, we can only loose
matching subgraph embeddings
but never gain additional
matches. (A; A, AB; 2B, )

A: 20, B: 30

CORK: q([S})=—(As Bs+As By

* The maximal value of g ({ T }) is
reached, when either all matches
in A or all matches in B are lost.
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For S — 7 we can derive;:
(
<A5]_A50)'35]
gUT)=q(iS})+maxiA (B, -8, )
0

Enables earlier pruning:

* No supergraph of 7T can exceed this upper bound.

* Thus, if we have seen a better subgraph, this branch can
be pruned.
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* CORK bound is extendible to Feature Sets

* For the enumeration of significant features:

1.9=0

2. gSpan = best subgraph S according to g({S}uU 4)
3.Ifg({Slug)>qg(T)

4. =908

5. GoTo 2.

6. return
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* NCI| Dataset:
* 6 chemical structure sets of variable size
 Mapped to label “effective against cancer” (Y / N)

 Comparison to 2 feature ranking methods:
* Sequential Cover via confidence score

* Pearson Correlation
« Comparison to wrapper approach LAR-LASSO

Tsuda, K. : Entire regularization paths for graph data. /[CML 2007
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* 10 repetitions of 10-fold cross validation
* on gSpan enumeration with freq. threshold 10%

 validated via a linear SVM

Filter Wrapper
SC PC CORK LAR
Dataset [#Features| Acc. |Std.| Acc. |Std.| Acc. |Std.| Acc. |Std.
NCI1 57 66.98(2.31]165.43|3.82]70.98|2.31173.08|2.06
NCI33 53 66.50(2.57]|64.15|3.46|70.08(2.76]72.81|2.51
NCI41 49 70.20|3.23]65.37(4.27]|70.38|2.72|72.39|2.58
NCl47 56 67.04(2.35]|67.00|3.45|71.42(2.22|72.62|2.07
NCI81 64 69.04(2.17]|64.27|5.01]70.76(2.21]172.58|1.88
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* Improve runtime

« Save minima
* Sharpen the
e Combine wit

DFS Codes
pound for later iterations

n other bounding criteria

> Subgraph mining procedure can be applied
without giving a frequency threshold

* Exploit tree structure for decision tree learning
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Set of features ¥ FS criterion f

[
F

argmax {f({s*}) : s* [ &}
while f(J) < f(¥ U {s}) do

g
S
S

end

Output

July 4th 2008

= g U {s}
= 5 \ {s}
= argmax {f(J 0O {s*}) : s* I &}

selected feature set 4
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ScT, (A=A, AB =B ) q({S})=—(A B +A '351)

T can loose all matches in B:

q((T)) < ~(As-(Bs +B)+A;-0)= —Ag-(Bs +B )
* T can loose all matches in A:
q([T)) < —((Ag+A;)-Bs +0-B; | = —(Ag +A ) By
* The maximal CORK value of T is thus
A, B (A —A;)-Bg
q(IT})=maxi—|A.8, 1=q(lS])+maxiA (B, -B)
q(lS)) 0
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