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Overview

● Why feature selection?
● Submodular selection criteria
● CORK, a novel feature selection criterion
● Inclusion of CORK into gSpan
● Experimental validation
● Summary and outlook
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Used setting

● Two-class problem:
● Collection of graphs
● Predict class label from graph topology

● Current solutions:
● Pattern-based learning (subgraphs, paths, circles)
● Graph kernel approaches (random walk, pattern 

based approaches)
● Nested approaches (feature generation adapted to 

the dataset)
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Feature Properties

● Frequent Subgraphs
● Can be efficiently enumerated (gSpan, FSG, MoSS)

● They also contain
● Insignificant features
● Redundant features, already covered by other 

substructures
● Potentially exponentially many
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Feature Selection

● Identify the most discriminative subgraphs

● Set Topt ⊆ F  (total feature set), s.t.

Topt = argmax f (S )

according to information criterion f.
S ⊆ F
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Feature Selection

Approaches
● Complete subset enumeration and test (Wrapper)
● Ranker selection (assuming feature independence)
● Greedy approaches

● Backward Elimination vs. Forward Selection 
● Nested approaches

● Feature selection performed in combination with 
feature generation
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Submodularity

Proof by Krause and Guestrin A note on the Budgeted Maximization of 
Submodular Functions. CMU 2005

f T  ≥ 1 − 1
e  f T opt 

Guarantee ofSubmodular decision function

Greedy Forward Selection
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Submodularity

Proof by Krause and Guestrin

set function f : F → ℝ 

f  is submodular ⇔

S ⊂ T ⊆ F , s ∈ F  : 
f (S ∪ {s}) – f (S ) ≥ f (T ∪ {s}) – f (T )

A note on the Budgeted Maximization of 
Submodular Functions. CMU 2005

f T  ≥ 1 − 1
e  f T opt 

Guarantee ofSubmodular decision function

Greedy Forward Selection
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Submodularity

Proof by Krause and Guestrin

set function f : F → ℝ 

f  is submodular ⇔

S ⊂ T ⊆ F , s ∈ F  : 
f (S ∪ {s}) – f (S ) ≥ f (T ∪ {s}) – f (T )

A note on the Budgeted Maximization of 
Submodular Functions. CMU 2005

f (S) = area(S)

f T  ≥ 1 − 1
e  f T opt 

Guarantee ofSubmodular decision function

Greedy Forward Selection
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Submodularity

Proof by Krause and Guestrin

set function f : F → ℝ 

f  is submodular ⇔

S ⊂ T ⊆ F , s ∈ F  : 
f (S ∪ {s}) – f (S ) ≥ f (T ∪ {s}) – f (T )

A note on the Budgeted Maximization of 
Submodular Functions. CMU 2005

f (S) = area(S)

f T  ≥ 1 − 1
e  f T opt 

Guarantee ofSubmodular decision function

Greedy Forward Selection
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CORK

Correspondence:
A pair of instances i , j  ∈ Dataset D  with          

class(i ) ≠ class(j ) is called a correspondence in a 
feature set S , if i  and j  have the same values for S.

Correspondence-based Quality Criterion (CORK ):
                           “number of correspondences in S ”

From now:
use CORK for binary feature values {0 , 1}.

q S  = −1 ∗
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CORK for One Feature S

Correspondence-based Quality Criterion (CORK ):
                         “number of correspondences in S ”

    :  # “feature S  = 0 in class A “  (# mis-matches)
    :  # “feature S  = 1 in class A “  (# matches)

q {S } = −AS 0
⋅B S 0

AS 1
⋅B S 1

q S  = −1 ∗
AS 0

AS 1

A B

1 1 0 1 0 0

1 0 0 1 0 0

a1 a2 a3 b1 b2 b3

s1

s2Fe
at

ur
es

2-class dataset
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CORK for One Feature S

Correspondence-based Quality Criterion (CORK ):
                         “number of correspondences in S ”

    :  # “feature S  = 0 in class A “  (# mis-matches)
    :  # “feature S  = 1 in class A “  (# matches)

q {S } = −AS 0
⋅B S 0

AS 1
⋅B S 1

q S  = −1 ∗
AS 0

AS 1

A B

1 1 0 1 0 0

1 0 0 1 0 0

a1 a2 a3 b1 b2 b3

s1

s2Fe
at

ur
es

2-class dataset

q {s1} = −1⋅22⋅1 = −4
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CORK for One Feature S

Correspondence-based Quality Criterion (CORK ):
                         “number of correspondences in S ”

    :  # “feature S  = 0 in class A “  (# mis-matches)
    :  # “feature S  = 1 in class A “  (# matches)

q {S } = −AS 0
⋅B S 0

AS 1
⋅B S 1

q S  = −1 ∗
AS 0

AS 1

A B

1 1 0 1 0 0

1 0 0 1 0 0

a1 a2 a3 b1 b2 b3

s1

s2Fe
at

ur
es

2-class dataset

q {s1} = −1⋅22⋅1 = −4
q {s2} = −2⋅21⋅1 = −5
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CORK on Feature Sets

q {S }=−AS 0
⋅B S 0

AS 1
⋅B S 1

q {S ,T }=− ∑i , j=0

1
AS i ,T j

⋅B S i ,T j
A B

1 1 0 1 0 0

1 0 0 1 0 0

a1 a2 a3 b1 b2 b3

s1

s2

q {s1,s 2}=−1⋅2
0,0

0⋅0
0,1

1⋅0
1,0

1⋅1
1,1 =−3

Histogram over equivalence classes for 
the possible feature combinations

For M  features: 2M possible equivalence classes
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CORK is Submodular

S ⊂ T ⊆ F , s ∈ F :
Improvement of T             must also improve S
Improvement  ≙ remove a correspondence
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CORK is Submodular

S ⊂ T ⊆ F , s ∈ F :
Improvement of T             must also improve S
Improvement  ≙ remove a correspondence

S
T

D
A B

s

∪ {s}

f (S ∪ {s}) – f (S ) ≥ f (T ∪ {s}) – f (T )
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CORK is Submodular

S ⊂ T ⊆ F , s ∈ F :
Improvement of T             must also improve S
Improvement  ≙ remove a correspondence

S
T

D
A B

s

S  ∪ {s}
T  ∪ {s}

D
A B

s

∪ {s}

f (S ∪ {s}) – f (S ) ≥ f (T ∪ {s}) – f (T )
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Primer on gSpan

⊥
0-edge

1-edge

2-edge

... ≃

● DFS Code Tree
● Efficient branch-and-bound 

● Frequency bound
● Minimality bound of DFS Code

● Worst-case runtime: exponential

● For any parent-child relationship 
in the search tree: parent  ⊑ child

pruned
not 

frequent: 
pruned

Yan, X. & Han, J.: gSpan: Graph-based sub-structure pattern mining. Proc. ICDM 2002
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CORK in gSpan

⊥
0-edge

1-edge

2-edge

... ≃ pruned

prune

not 
frequent: 
pruned

● Let parent  S  ⊑ child T  be 
frequent subgraphs

● From S  to T, we can only loose 
matching subgraph embeddings 
but never gain additional 
matches.

CORK:

● The maximal value of            is 
reached, when either all matches 
in A  or all matches in B  are lost.

AS 1
≥AT 1

∧B S 1
≥B T 1



q {S }=−AS 0
⋅B S 0

AS 1
⋅B S 1

q {T }
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CORK in gSpan

A: 20, B: 30

● Let parent  S  ⊑ child T  be 
frequent subgraphs

● From S  to T, we can only loose 
matching subgraph embeddings 
but never gain additional 
matches.

CORK:

● The maximal value of            is 
reached, when either all matches 
in A  or all matches in B  are lost.

AS 1
≥AT 1

∧B S 1
≥B T 1



q {S }=−AS 0
⋅B S 0

AS 1
⋅B S 1

q {T }

A: 15, B: 23 A: 0, B: 18

pruned
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CORK as a Threshold

For S  ⊑ T  we can derive:

Enables earlier pruning:
●  No supergraph of T  can exceed this upper bound.
●  Thus, if we have seen a better subgraph, this branch can 
be pruned.

q {T } ≤ q {S }  max{AS 1
−AS 0

⋅B S 1

AS 1
⋅B S 1

−B S 0


0
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gSpan via CORK

● CORK bound is extendible to Feature Sets
● For the enumeration of significant features:

1. T = ∅
2. gSpan ⇒ best subgraph S  according to 
3. If                               :
4.     T = T  ∪ S
5.     GoTo 2. 
6. return T

q {S }∪ T 

q {S }∪ T   q T 
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Experimental Validation

● NCI Dataset:
● 6 chemical structure sets of variable size
● Mapped to label “effective against cancer” (Y / N)

● Comparison to 2 feature ranking methods:
● Sequential Cover via confidence score
● Pearson Correlation

● Comparison to wrapper approach LAR-LASSO
Tsuda, K. : Entire regularization paths for graph data. ICML 2007
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Results

● 10 repetitions of 10-fold cross validation
● on gSpan  enumeration with freq. threshold 10% 
● validated via a linear SVM

Filter Wrapper
SC PC CORK LAR

Dataset #Features Acc. Acc. Acc. Acc.
NCI1 57 66.98 2.31 65.43 3.82 70.98 2.31 73.08 2.06
NCI33 53 66.50 2.57 64.15 3.46 70.08 2.76 72.81 2.51
NCI41 49 70.20 3.23 65.37 4.27 70.38 2.72 72.39 2.58
NCI47 56 67.04 2.35 67.00 3.45 71.42 2.22 72.62 2.07
NCI81 64 69.04 2.17 64.27 5.01 70.76 2.21 72.58 1.88

Std. Std. Std. Std.
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Outlook

● Improve runtime
● Save minimal DFS Codes
● Sharpen the bound for later iterations
● Combine with other bounding criteria
➔ Subgraph mining procedure can be applied 

without giving a frequency threshold
● Exploit tree structure for decision tree learning
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Thank you.
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Forward Selection

Input: Set of features F,  FS criterion f
T := ∅
S := F
s = argmax {f({s*}) : s* ∈ S }
while f(T ) < f(T  ∪ {s}) do

T := T  ∪ {s}
S := S  \ {s}
s = argmax {f(T  ∪ {s*}) : s* ∈ S }

end
Output: selected feature set T
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CORK as a Threshold

S  ⊑ T ,
● T  can loose all matches in B :

● T  can loose all matches in A :

● The maximal CORK value of T  is thus 

q {T } ≤ max{−AS 0
⋅∣B∣

−∣A∣⋅B S 0

q {S } }= q {S }  max{AS 1
−AS 0

⋅B S 1

AS 1
⋅B S 1

−B S 0


0

AS 1
≥AT 1

∧B S 1
≥B T 1

 q {S }=−AS 0
⋅B S 0

AS 1
⋅B S 1

q {T } ≤ −AS 0
⋅B S 0

B S 1
AS 1

⋅0= −AS 0
⋅B S 0

B S 1


q {T } ≤ −AS 0
AS 1

⋅B S 0
0⋅B S 1= −AS 0

AS 1
⋅B S 0


