Efficient Discriminative Training Method for Structured Predictions

Huizhen Yu1 Dimitri P. Bertsekas2 Juho Rousu1

1Department of Computer Science
University of Helsinki

2Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

MLG08, Helsinki, Finland, Jul. 4-5, 2008
Two Aspects in This Research

New Optimization Approach that can handle very large data sets
- Reparametrization
- Restricted simplicial decomposition
- Proximal point algorithm

Formulation of Discriminative Training of Generative Models
- Max margin
- Control of model deviation
- Similar formulations exist in the literature
Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary
Overview

We consider

- Discriminative training (DT) for structured predictions
 - formulation motivated by SVM (e.g., Collins ’02, Altun et al. ’03, Taskar et al. ’04)
 - enforce “margin constraints”
 - result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
 - discrete space DAG, log-linear models
 - supervised learning setting
 - an example of the extended DT formulation
Overview

We consider

- Discriminative training (DT) for structured predictions
 - formulation motivated by SVM
 (e.g., Collins '02, Altun et al. '03, Taskar et al. '04)
 - enforce “margin constraints”
 - result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations
 with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
 - discrete space DAG, log-linear models
 - supervised learning setting
 - an example of the extended DT formulation
Overview

We consider

- Discriminative training (DT) for structured predictions
 - formulation motivated by SVM (e.g., Collins ’02, Altun et al. ’03, Taskar et al. ’04)
 - enforce “margin constraints”
 - result in large scale optimization problems

We present a new dual optimization algorithm:

- Reparametrization for dimensionality reduction
- Applicable to extended DT formulations with additional parameter constraints and non-quadratic objectives

We focus on a particular type of problem:

- Discriminative training for generative models
 - discrete space DAG, log-linear models
 - supervised learning setting
 - an example of the extended DT formulation
Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities
 \[\theta = \{ \theta_i, i \in \mathcal{I} \}, \quad \theta_i : \ln p(X = \cdot | pa_X), \text{ for some variable } X \]

- Parameter constraints: \[1' e^{\theta_i} = 1, \ i \in \mathcal{I} \]

For training:

- Fully observed examples, indexed by \(\mathcal{K} \)
- \(\forall k \in \mathcal{K} \), specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training
 e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize \(\theta \) using the SVM-like DT criteria
 enforce margin constraints

Use of such training: e.g., when prediction accuracy is important, when examples are likely to be dependent
Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- **Examples**: Bayesian networks (BN), hidden Markov models (HMM)
- **Parameters of the model**: a set of log of conditional probabilities
 \[\theta = \{ \theta_i, i \in \mathcal{I} \}, \quad \theta_i : \ln p(X = \cdot | \text{pa}_X), \text{ for some variable } X \]
- **Parameter constraints**: \(1^{\prime} \mathbf{e}^{\theta_i} = 1, i \in \mathcal{I} \)

For training:

- Fully observed examples, indexed by \(\mathcal{K} \)
- \(\forall k \in \mathcal{K} \), specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training
 e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize \(\theta \) using the SVM-like DT criteria
 enforce margin constraints

Use of such training: e.g., when prediction accuracy is important, when examples are likely to be dependent
Setting for Supervised Learning

Consider directed graphical models with discrete spaces

- Examples: Bayesian networks (BN), hidden Markov models (HMM)
- Parameters of the model: a set of log of conditional probabilities

\[\theta = \{ \theta_i, i \in I \}, \quad \theta_i : \ln p(X = \cdot | \text{pa}_X), \text{ for some variable } X \]

- Parameter constraints: \(1'e^{\theta_i} = 1, i \in I\)

For training:

- Fully observed examples, indexed by \(K\)
- \(\forall k \in K\), specify prediction variables (considered as hidden) and observation variables (non-hidden)
- Prediction variables may be naturally determined by tasks, or, chosen just for the purpose of training
 e.g., choose different subsets of nodes for different exs. to cover the graph
- Optimize \(\theta\) using the SVM-like DT criteria
 enforce margin constraints

Use of such training: e.g., when prediction accuracy is important, when examples are likely to be dependent
Formulation of Discriminative Training Problem

Notation: for each example \(k \in \mathcal{K} \),

- \(S_k \): the space of all possible prediction outcomes
- \((s^*, o)\): values of hidden and non-hidden variables, resp.

Introduce margin constraints: \(\forall k \in \mathcal{K}, \forall s \in S_k \),

\[
\ln p(s, o ; \theta) - \ln p(s^*, o ; \theta) + l_k(s, s^*) \leq \epsilon_k,
\]

\(\epsilon_k \): positive slack variables for the usual non-ideal case; \(l_k \): loss function

- Meaning: ideally, after training, \(p(s \mid o) \) is peaked at \(s^* \)
- Write the linear margin constraints equivalently as

\[
\sum_{i \in \mathcal{I}} a_{i,k}(s)^t \theta_i + b_k(s) \leq \epsilon_k, \quad \forall s \in S_k, \quad k \in \mathcal{K}
\]
Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- S_k: the space of all possible prediction outcomes
- (s^*, o): values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \forall s \in S_k$,

$$\ln p(s, o; \theta) - \ln p(s^*, o; \theta) + l_k(s, s^*) \leq \epsilon_k,$$

ϵ_k: positive slack variables for the usual non-ideal case; l_k: loss function

- Meaning: ideally, after training, $p(s \mid o)$ is peaked at s^*
- Write the linear margin constraints equivalently as

$$\sum_{i \in \mathcal{I}} a_{i,k}(s) \theta_i + b_k(s) \leq \epsilon_k, \quad \forall s \in S_k, \; k \in \mathcal{K}$$
Formulation of Discriminative Training Problem

Notation: for each example $k \in \mathcal{K}$,

- S_k: the space of all possible prediction outcomes
- (s^*, o): values of hidden and non-hidden variables, resp.

Introduce margin constraints: $\forall k \in \mathcal{K}, \forall s \in S_k$,

$$\ln p(s, o; \theta) - \ln p(s^*, o; \theta) + l_k(s, s^*) \leq \epsilon_k,$$

ϵ_k: positive slack variables for the usual non-ideal case; l_k: loss function

- Meaning: ideally, after training, $p(s \mid o)$ is peaked at s^*
- Write the linear margin constraints equivalently as

$$\sum_{i \in \mathcal{I}} a_{i,k}(s) \theta_i + b_k(s) \leq \epsilon_k, \quad \forall s \in S_k, \ k \in \mathcal{K}$$
Primal Problem

Formulate training as solving the convex program:

\[
\begin{align*}
\text{(P)} \quad & \min_{\theta, \epsilon} - \sum_{i \in I} c_i^t \theta_i + \eta \sum_{k \in K} \epsilon_k \\
& \text{subj. } \sum_{i \in I} a_{i,k}(s)^t \theta_i + b_k(s) \leq \epsilon_k, \quad \forall s \in S_k, \ k \in K \quad \text{(marg.)}
\end{align*}
\]

\[1^t e^{\theta_i} = 1 \quad \text{relax to} \quad 1^t e^{\theta_i} \leq 1, \quad \forall i \in I\]

\[\theta_i \leq 0, \quad \forall i \in I, \ \epsilon_k \geq 0, \quad \forall k \in K\]

Objective function:

- First term: control degree of deviation from certain given parameters

 \(-c_i^t \theta_i\) comes from KL-divergence \(D(p\|q) = -\sum_j p_j \ln q_j - H(p)\)

 \(\forall i, \ \ln q : \theta_i, \ c_i \propto p = \text{some fixed distribution}\)

 \(p\) can be e.g., ML estimate, uniform distribution

- Second term: penalty for margin violation
Primal Problem

Formulate training as solving the convex program:

\[
\begin{align*}
\text{(P)} \quad & \min_{\theta, \epsilon} - \sum_{i \in I} c_i' \theta_i + \eta \sum_{k \in K} \epsilon_k \\
& \text{subj. } \sum_{i \in I} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \ \forall s \in S_k, \ k \in K \quad \text{(marg.)}
\end{align*}
\]

Objective function:

- First term: control degree of deviation from certain given parameters
 \(-c_i' \theta_i\) comes from KL-divergence \(D(p||q) = -\sum_j p_j \ln q_j - H(p)\)

 \(\forall i, \ \ln q : \theta_i, \ c_i \propto p = \text{some fixed distribution}\)

 \(p\) can be e.g., ML estimate, uniform distribution

- Second term: penalty for margin violation
Primal Problem

Formulate training as solving the convex program:

\[
(P) \min_{\theta, \epsilon} - \sum_{i \in I} c'_i \theta_i + \eta \sum_{k \in K} \epsilon_k \\
\text{subj.} \sum_{i \in I} a_i, k(s)' \theta_i + b_k(s) \leq \epsilon_k, \ \forall s \in S_k, \ k \in K \quad \text{(marg.)}
\]

\[1'e^{\theta_i} = 1 \quad \text{relax to} \quad 1'e^{\theta_i} \leq 1, \ \forall i \in I\]
\[\theta_i \leq 0, \ \forall i \in I, \ \epsilon_k \geq 0, \ \forall k \in K\]

Objective function:

- First term: control degree of deviation from certain given parameters

 \[-c'_i \theta_i \text{ comes from KL-divergence } D(p\|q) = -\sum_j p_j \ln q_j - H(p)\]

 \[\forall i, \ \ln q : \theta_i, \quad c_i \propto p \text{ = some fixed distribution}\]

 \[p \text{ can be e.g., ML estimate, uniform distribution}\]

- Second term: penalty for margin violation
Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary
Reparametrization – Dimensionality Reduction

Margin constraints in \((P)\):

\[
\sum_{i \in \mathcal{I}} a_{i,k}(s)\theta_i + b_k(s) \leq \epsilon_k, \quad \forall s \in S_k, \quad k \in \mathcal{K}
\]

(marg.)

Corresponding term in the Lagrangian function \(\mathcal{L}\):

with multipliers \(\beta = \{\beta_k(s), k \in \mathcal{K}, s \in S_k\}\),

\[
\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \left(\sum_{i \in \mathcal{I}} a_{i,k}(s)^\prime \theta_i + b_k(s) - \epsilon_k \right)
\]

\[
= \sum_{i \in \mathcal{I}} \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) a_{i,k}(s)^\prime \right) \theta_i + \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) b_k(s) \right) - \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \epsilon_k
\]

\[
\overset{\text{def}}{=} \mu_i
\]

\[
\overset{\text{def}}{=} \omega
\]

- **Data-dependent linear transformation of \(\beta\)**
- \(\dim(\mu_i) = \dim(\theta_i)\), \(\dim(\omega) = 1\)
Reparameterization – Dimensionality Reduction

Margin constraints in (P):

\[\sum_{i \in I} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \ \forall s \in S_k, \ k \in \mathcal{K} \]

(marg.)

Corresponding term in the Lagrangian function \(\mathcal{L} \):

with multipliers \(\beta = \{ \beta_k(s), k \in \mathcal{K}, s \in S_k \} \),

\[\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \left(\sum_{i \in I} a_{i,k}(s)' \theta_i + b_k(s) - \epsilon_k \right) \]

\[= \sum_{i \in I} \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) a_{i,k}(s)' \right) \theta_i + \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) b_k(s) \right) - \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \epsilon_k \]

\[\overset{\text{def}}{=} \mu_i \]

\[\overset{\text{def}}{=} \omega \]

- Data-dependent linear transformation of \(\beta \)
- \(\dim(\mu_i) = \dim(\theta_i), \ dim(\omega) = 1 \)
Reparametrization – Dimensionality Reduction

Margin constraints in (P):

\[
\sum_{i \in \mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \quad \forall s \in S_k, \quad k \in \mathcal{K}
\]

(marg.)

Corresponding term in the Lagrangian function \(\mathcal{L} \):

with multipliers \(\beta = \{ \beta_k(s), k \in \mathcal{K}, s \in S_k \} \),

\[
\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \left(\sum_{i \in \mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) - \epsilon_k \right)
\]

\[
= \sum_{i \in \mathcal{I}} \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) a_{i,k}(s)' \right) \theta_i + \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) b_k(s) \right) - \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \epsilon_k
\]

\[
\overset{\text{def}}{=} \mu_i \quad \overset{\text{def}}{=} \omega
\]

- Data-dependent linear transformation of \(\beta \)
- \(\dim(\mu_i) = \dim(\theta_i), \dim(\omega) = 1 \)
Reparametrization – Dimensionality Reduction

Margin constraints in (P):

\[\sum_{i \in \mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \quad \forall s \in S_k, \, k \in \mathcal{K} \quad \text{(marg.)} \]

Corresponding term in the Lagrangian function \(\mathcal{L} \):

with multipliers \(\beta = \{ \beta_k(s), k \in \mathcal{K}, s \in S_k \} \),

\[
\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \left(\sum_{i \in \mathcal{I}} a_{i,k}(s)' \theta_i + b_k(s) - \epsilon_k \right)
\]

\[
= \sum_{i \in \mathcal{I}} \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) a_{i,k}(s)' \right) \theta_i + \left(\sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) b_k(s) \right) - \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) \epsilon_k
\]

\[\overset{\text{def}}{=} \mu_i \quad \overset{\text{def}}{=} \omega \]

- Data-dependent linear transformation of \(\beta \)
- \(\dim(\mu_i) = \dim(\theta_i), \, \dim(\omega) = 1 \)
Size-Reduced Dual Problem

With an Implicit Set Constraint

Write the dual problem in terms of \((\mu, \omega)\) instead of \(\beta\):

\[
(D) \quad \max_{\mu, \omega, \lambda} \quad \omega - \sum_{i \in I} \lambda_i + \sum_{i \in I} q_i(\mu_i, \lambda_i)
\]

subj. \(\lambda \geq 0, \quad (\mu, \omega) \in D\)

- \(q_i\) terms: from minimizing \(\mathcal{L}\) w.r.t. primal variables

\[
q_i(\mu_i, \lambda_i) = \min_{\theta_i \leq 0} \left[(\mu_i - c_i)' \theta_i + \lambda_i 1' e^{\theta_i} \right]
\]

- \(D\): an implicit set constraint determined by reparametrization

\[
D = \left\{ (\mu, \omega) \mid \mu_i = \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) a_{i,k}(s), \quad \omega = \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s) b_k(s), \quad \beta_k \geq 0, \quad 1' \beta_k \leq \eta, \quad \forall k \in \mathcal{K} \right\}
\]

- Dim. of dual function = Dim. of primal variables + \(|I| + 1\)
- Size of \((D)\) “independent” of \(|S_k|\) and \(|\mathcal{K}|\)
- \(D\) can be very complicated; apply feasible direction methods (RSD algorithm)
Size-Reduced Dual Problem
With an Implicit Set Constraint

Write the dual problem in terms of \((\mu, \omega)\) instead of \(\beta\):

\[
(D) \quad \max_{\mu,\omega,\lambda} \quad \omega - \sum_{i \in I} \lambda_i + \sum_{i \in I} q_i(\mu_i, \lambda_i)
\]
subj. \(\lambda \geq 0, \ (\mu, \omega) \in \mathcal{D}\)

- \(q_i\) terms: from minimizing \(\mathcal{L}\) w.r.t. primal variables
 \[q_i(\mu_i, \lambda_i) = \min_{\theta_i \leq 0} \left[(\mu_i - c_i)'\theta_i + \lambda_i 1'e^\theta_i \right]\]

- \(\mathcal{D}\): an implicit set constraint determined by reparametrization
 \[\mathcal{D} = \left\{(\mu, \omega) \mid \mu_i = \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s)a_{i,k}(s), \ \omega = \sum_{k \in \mathcal{K}, s \in S_k} \beta_k(s)b_k(s), \beta_k \geq 0, \ 1'\beta_k \leq \eta, \forall k \in \mathcal{K}\right\}\]

- Dim. of dual function = Dim. of primal variables + \(|I| + 1\)
- Size of \((D)\) “independent” of \(|S_k|\) and \(|\mathcal{K}|\)
- \(\mathcal{D}\) can be very complicated; apply feasible direction methods (RSD algorithm)
Background: Feasible Direction Methods – Simplicial Decomposition

To deal with an implicit and complicated feasible region:

(1) Make successive inner approximation of the feasible region
 – Direction finding subproblems:
 for $\max_{z \in Z} Q(z)$, typically solve
 $$\max_{z \in Z} \nabla Q(z^t)'(z - z^t)$$
 In our case: “loss-augmented inference” (exact or approximate)

(2) Optimize the function over inner approximations
 – Master problems
Background: Feasible Direction Methods – Simplicial Decomposition

To deal with an implicit and complicated feasible region:

1. Make successive inner approximation of the feasible region
 - Direction finding subproblems:
 for $\max_{z \in Z} Q(z)$, typically solve
 $\max_{z \in Z} \nabla Q(z^t)'(z - z^t)$
 In our case: “loss-augmented inference” (exact or approximate)

2. Optimize the function over inner approximations
 - Master problems
Background: Feasible Direction Methods – Simplicial Decomposition

To deal with an implicit and complicated feasible region:

1. Make successive inner approximation of the feasible region
 - **Direction finding subproblems**: for \(\max_{z \in Z} Q(z) \), typically solve
 \[
 \max_{z \in \mathcal{Z}} \nabla Q(z^t)' (z - z^t)
 \]
 In our case: “loss-augmented inference” (exact or approximate)

2. Optimize the function over inner approximations
 - **Master problems**
Restricted Simplicial Decomposition (RSD)

RSD (Hearn et al. ’87):

- Set an upper limit to the dimension of the simplex: complexity of master problems independent of the original problem
- Apply a projected Newton method (Bertsekas ’82) to solve master problems: superlinear convergence, finite convergence for quadratic objective

Points at ascent dir.

Complicated feasible region found by dir-finding
Restricted Simplicial Decomposition (RSD)

RSD (Hearn et al. ’87):

- Set an upper limit to the dimension of the simplex: *complexity of master problems independent of the original problem*
- Apply a projected Newton method (Bertsekas ’82) to solve master problems: superlinear convergence, finite convergence for quadratic objective

![Diagram of RSD process](image-url)
Algorithm: Reparametrization + RSD + · · ·
Motivation for Applying the Proximal Point Algorithm

Difficulty of applying RSD directly to solve (D):

- The dual function is not everywhere real-valued (unlike the QP case)
 \[\mu \text{ needs to satisfy: } \mu_i \leq c_i, i \in I \]

Finding a point in \(\{ (\mu, \omega) | \mu_i \leq c_i, i \in I, \omega \in \mathbb{R} \} \cap \mathcal{D} \) is costly.

Solution:

- Add a quadratic term \(\frac{\gamma_0}{2} \| \theta - \theta^0 \|^2 \) to (P)
- Moving the center \(\theta^0 \) in a certain way to approach an optimal solution of (P) – known as the **proximal point algorithm**:

Exact form: to solve \(\min_{x \in X} f(x) \), iterate

\[
x^{n+1} = \arg \min_{x \in X} \left[f(x) + \frac{\gamma_n}{2} \| x - x^n \|^2 \right], \quad \text{with } \gamma_n \geq 0, \sup_n \gamma_n < \infty.
\]
Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary

Algorithm: Reparametrization + RSD + · · ·

Motivation for Applying the Proximal Point Algorithm

Difficulty of applying RSD directly to solve (D):

- The dual function is not everywhere real-valued (unlike the QP case)
 \[\mu \text{ needs to satisfy: } \mu_i \leq c_i, i \in \mathcal{I} \]

 Finding a point in \(\{ (\mu, \omega) | \mu_i \leq c_i, i \in \mathcal{I}, \omega \in \mathbb{R} \} \cap \mathcal{D} \) is costly.

Solution:

- Add a quadratic term \(\frac{\gamma_0}{2} \| \theta - \theta^0 \|^2 \) to (P)
- Moving the center \(\theta^0 \) in a certain way to approach an optimal solution of (P) – known as the \textit{proximal point algorithm}:

Exact form: to solve \(\min_{x \in X} f(x) \), iterate

\[
x^{n+1} = \arg\min_{x \in X} \left[f(x) + \frac{\gamma_n}{2} \| x - x^n \|^2 \right], \quad \text{with } \gamma_n \geq 0, \sup_n \gamma_n < \infty.
\]
Dual Proximal Point Algorithm

We solve a sequence of regularized primal problems by dual optimization with reparametrization and RSD:

\[(P_n) \min_{\theta, \epsilon} - \sum_{i \in I} c_i' \theta_i + \eta \sum_{k \in K} \epsilon_k + \frac{\gamma_n}{2} \|\theta - \theta^n\|^2\]

subj. \(\sum_{i \in I} a_{i,k}(s)' \theta_i + b_k(s) \leq \epsilon_k, \forall s \in S_k, k \in K\)

\(1' e^{\theta_i} \leq 1, \forall i \in I, \epsilon_k \geq 0, \forall k \in K\)

\[(D_n) \max_{\mu, \omega, \lambda} \omega - \sum_{i \in I} \lambda_i + \sum_{i \in I} q^n_i(\mu_i, \lambda_i)\]

subj. \(\lambda \geq 0, (\mu, \omega) \in D\)

where \(q^n_i(\mu_i, \lambda_i) = \min_{\theta_i \in \mathbb{R}^{d_i}} \left[(\mu_i - c_i)' \theta_i + \lambda_i 1' e^{\theta_i} + \frac{\gamma_n}{2} \|\theta_i - \theta^n_i\|^2 \right].\)

- Can efficiently evaluate \(q^n_i\) (Newton’s method, global quadratic convergence) and its 1st and 2nd order derivatives
- \(D\) does not depend on \(\theta^n\)
Dual Proximal Point Algorithm

We solve a sequence of regularized primal problems by dual optimization with reparametrization and RSD:

\[\begin{align*}
(P_n) \quad & \min_{\theta, \epsilon} - \sum_{i \in I} c_i^t \theta_i + \eta \sum_{k \in K} \epsilon_k + \frac{\gamma n}{2} \|\theta - \theta^n\|^2 \\
& \text{subj.} \sum_{i \in I} a_{i,k}(s)^t \theta_i + b_k(s) \leq \epsilon_k, \ \forall s \in S_k, \ k \in K \\
& \quad 1^t e^{\theta_i} \leq 1, \ \forall i \in I, \ \epsilon_k \geq 0, \ \forall k \in K
\end{align*} \]

\[\begin{align*}
(D_n) \quad & \max_{\mu, \omega, \lambda} \omega - \sum_{i \in I} \lambda_i + \sum_{i \in I} q^n_i(\mu_i, \lambda_i) \\
& \text{subj.} \lambda \geq 0, \ (\mu, \omega) \in \mathcal{D}
\end{align*} \]

where \[q^n_i(\mu_i, \lambda_i) = \min_{\theta_i \in \mathbb{R}^{d_i}} \left[(\mu_i - c_i)^t \theta_i + \lambda_i 1^t e^{\theta_i} + \frac{\gamma n}{2} \|\theta_i - \theta^n_i\|^2 \right]. \]

- Can efficiently evaluate \(q^n_i \) (Newton’s method, global quadratic convergence) and its 1st and 2nd order derivatives
- \(\mathcal{D} \) does not depend on \(\theta^n \)
Algorithm Chart from Dual Viewpoint

RSD Iterations

form a new master problem

inner appr. of D
expand inn.-appr.

Master Problem
apply projected Newton to appr. solve the dual on the inner approximation

direction finding
loss-augmented inference

Dual Function Evaluation
current dual solution + the degree of satisfying optimality conditions
center

determine center update

Overview and Problem Formulation
Algorithm
Preliminary Experiments
Summary
Algorithm Variants with Same Idea

Alternative reparametrization for working sets:

- Partition training data \(\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2 \cup \cdots \cup \mathcal{K}_m \)
- Introduce \((\mu^j, \omega^j), j = 1, \ldots, m\) by grouping respective terms in \(\mathcal{L} \):

\[
\sum_{i \in \mathcal{I}} \left(\sum_{j=1}^{m} \sum_{k \in \mathcal{K}_j, s \in \mathcal{S}_k} \beta_k(s) a_{i,k}(s)' \right) \theta_i + \left(\sum_{j=1}^{m} \sum_{k \in \mathcal{K}_j, s \in \mathcal{S}_k} \beta_k(s) b_k(s) \right)
\]

\(\text{def} = \mu^j \quad \text{def} = \omega^j \)

- Dual problem with implicit set constraints \((\mu^j, \omega^j) \in \mathcal{D}_j, j = 1, \ldots, m\) relation with the first reparametrization:

\[
\mu = \sum_{j=1}^{m} \mu^j, \quad \omega = \sum_{j=1}^{m} \omega^j, \quad \mathcal{D} = \mathcal{D}_1 + \mathcal{D}_2 + \cdots + \mathcal{D}_m
\]

- Special case/connection with cutting plane-like methods:
 singleton \(\mathcal{K}_j \), \(m = |\mathcal{K}| \)
Further remarks on reparametrization:

- Arbitrary and varying working sets can also be handled in the first reparametrization \((\mu, \omega)\): use the inner approximation view
- For different margin violation penalties: e.g., quadratic or loss-rescaled slacks (Tsochantaridis et al. ’05); \(D\) may be unbounded, but the same algorithm can be applied.

Note:

- Reparametrization preserves the inference problem structure
- On use of working sets: proper batch size + coordinate ascent trades off the complexity of direction finding subproblems with that of master problems, and achieves overall efficiency.
Algorithm Behavior and Comparisons of Working Set Sizes

Synthetic HMM data:
10 states, 7 observations
1000 sequences/length 50
\[\text{dim}(\theta) = 180, |\mathcal{I}| = 21 \]

Batch size \(\times m \):
- B \(100 \times 10 \)
- G \(500 \times 2 \)
- M \(1000 \times 1 \)
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview and Problem Formulation</td>
</tr>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>Preliminary Experiments</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>
I: the Synthetic HMM Example

HMM with 10 states and 7 observations:

Dynamics: clockwise, random jump w/ a small probability \(\approx 0.3 \)

Observation: uniform

- Training: 1000 seq. of length 50, \(c_i = \text{uniform} \)
- Test: 100 seq. of length 50, average over 10 runs
 measure loss on MAP state seq. loss: distance on the ring

Test loss:
- DT: \(82.2 \pm 13.5 \) per seq.
- ML: \(101.6 \pm 14.0 \) per seq.

Comparison of the dimensionalities of dual variables:

- \(|\mathcal{I}| = 21, \dim(\theta) = 180, \dim(\beta) = 1000 \times 10^{50} \)
- reparametrization w/ \(m \) working sets:
 \(\dim = m \times 181 + 21 \)
- “edge-wise”/“marginal polytope” parametrization:
 \(\dim = 1000 \times 50 \times (10 \times 10) + 21 \)
II: Yeast Dataset – a Case Study on Modeling

UCI Yeast Dataset (discretized)/ multiclass classification

- 9 variables with BN structure (given)
- \(|\mathcal{I}| = 60\) and \(\dim(\theta) = 191\)
- loss: classification error
- 1484 data points: 1115 (80%) for training and 296 (20%) for testing

Further selection from training examples

- Select instances \((s^*, o)\) such that
 \[
 \max_s \ln p(s \mid o; \theta_{ML}) - \ln p(s^* \mid o; \theta_{ML}) \leq \delta, \quad \delta \geq 0 : \text{ selection level}
 \]
- Reason: avoid difficult instances
 alternative to further selection: set loss differently for each instance in training
II: Yeast Dataset – a Case Study on Modeling

UCI Yeast Dataset (discretized)/ multiclass classification

- 9 variables with BN structure (given)

- \(|\mathcal{I}| = 60\) and \(\dim(\theta) = 191\)

- loss: classification error

- 1484 data points: 1115 (80\%) for training and 296 (20\%) for testing

Further selection from training examples

- Select instances \((s^*, o)\) such that

 \[
 \max_s \ln p(s | o ; \theta_{ML}) - \ln p(s^* | o ; \theta_{ML}) \leq \delta, \quad \delta \geq 0 : \text{selection level}
 \]

- Reason: avoid difficult instances

alternative to further selection: set loss differently for each instance in training
II: Yeast Dataset – a Case Study on Modeling

\[\begin{align*}
B \quad & c_i = \text{ML weighted by } \gamma_i > 0 \\
& \| \theta^* - \theta_{ML} \| : 0.18 \pm 0.10 \\
G \quad & c_i = \text{uniform} \\
& \| \theta^* - \theta_{ML} \| : 4.18 \pm 0.03
\end{align*} \]
II: Yeast Dataset – a Case Study on Modeling

\[G \quad c_i = \text{uniform} \]
\[\| \theta^* - \theta_{ML} \| : 4.18 \pm 0.03 \]

\[R \quad c_i = 0, \text{ use } \| \theta \|^2 \text{ as regularizer} \]
\[\| \theta^* - \theta_{ML} \| : 4.82 \pm 0.04 \]
Outline

Overview and Problem Formulation

Algorithm

Preliminary Experiments

Summary
Summary of our algorithm for solving large margin training problems:

- Reparametrization + RSD + proximal point algorithm
- Combine dimensionality reduction, differentiable optimization of feasible direction type, and regularization

For discriminative training of generative models, need to study:

- Tradeoff between faithfulness to the data and discriminative capacity
- Effect of the relaxed sum-of-probabilities constraint
- Combination with structure learning