Markov Logic improves protein β-partners prediction

Marco Lippi, Paolo Frasconi

Machine Learning & Neural Networks group
Università degli Studi di Firenze
3D Protein structure prediction

- PDB entry 1FD4

- Very complex structured and relational problem
- Many link prediction tasks
- Contact maps
 - [Casadio et al. 2000, Pollastri 2006]
- Cysteine connectivity
 - [Vullo & Frasconi 2004, Taskar et al. 2005]
- β-partners prediction
 - [Baldi & Cheng 2005]

Marco Lippi, Paolo Frasconi
Markov Logic improves protein β-partners prediction
β-partners: a link prediction task

β-sheets:
- flat conformations of two or more extended strands (may be parallel or anti-parallel)

β-partners prediction within a protein sequence:
- **sub-problem** of contact map prediction, where contact matrix is restricted to residues belonging to β-sheets.
- **link-prediction** problem in a graph, in which β-residues are nodes, and the edges (to be predicted) represent the contacts.
β-partners: a link prediction task

Early approach by [Baldi et al. 2000]:
- feedforward neural networks trained as binary classifiers on residue pairs \((i, j)\)
- window around residues as input to the network
- data set highly **imbalanced**: 37,000 positive cases vs. 44,000,000 negative ones
- not taking into account relations between targets
State-of-the-art architecture: BetaPro

[Baldi & Cheng 2005] set up a two-stage architecture (BetaPro):

- a 2D recursive neural network (2D-RNN) is trained using a grid structure with the binary contact matrix as target
- a post-processing non-adaptive phase rearranges β-links by graph matching and pseudoenergy minimization
- secondary structure is assumed to be known: residues are already assigned to one of three classes (α-helix, β-sheet, coil)
\(\beta \)-partners: a link prediction task

\(\beta \)-partners follow common conformation patterns

- non independent predictions \(\rightarrow \) collective classification
- discriminative learning is appropriate
- first-order logic is a straightforward way to build the model
- background knowledge (with noise) \(\rightarrow \) uncertainty
 \(\Rightarrow \) use of Markov Logic

Example: \(\beta \)-hairpin motif

\[
\text{LastOfStrand}(r_1,s_1) \land \text{FirstOfStrand}(r_2,s_2) \land \\
\text{DistanceLessThanSix}(s_1,s_2) \land \text{GlycineWithin}(s_1,s_2) \\
\Rightarrow \text{Partners}(r_1,r_2)
\]
Markov Logic Networks (MLNs), introduced by [Domingos & Richardson 2006], combine in a single representation:

- first-order logic
- probabilistic graphical models

A MLN can be seen as a **template** for constructing Markov Random Fields, given:

- a set of first-order formulae f_1, \ldots, f_N
- a database of constants C_1, \ldots, C_K

Uncertainty is modeled attaching **weights** to first-order formulae.
In the setting of **discriminative** learning, an MLN is a model for the conditional distribution of a set of **query atoms** Y given a set of **evidence atoms** X, expressed by a log-linear function:

$$P(Y = y|X = x) = \frac{\exp\left(\sum_{F_i \in F_y} w_i n_i(x, y)\right)}{Z_x}$$

where

- w_i : real-valued weight attached to formula F_i
- F_y : set of formulas that contain query atoms
- $n_i(x, y)$: number of groundings of F_i satisfied in world (x, y)
- Z_x : normalization factor
Discriminative learning:
- maximizes the conditional log-likelihood (CLL) $\log P(y|x)$
- requires inference on the Markov Random Field generated by the database of constants.

Inference algorithms:
- **MC-SAT** \rightarrow compute conditional probabilities of query atoms
- **MaxWalkSAT** \rightarrow compute maximum probability configuration of query atoms (MAP)
Curse of dimensionality

Dilemma

Curse of dimensionality...

Nonlinear model with number of parameters exponential in k

$\text{Feature}_1(x, +f_1) \land \ldots \land \text{Feature}_k(x, +f_k) \Rightarrow \text{QueryPredicate}(x)$

\Downarrow

$\text{Feature}_1(x, c_{11}) \land \ldots \land \text{Feature}_k(x, c_{1k}) \Rightarrow \text{QueryPredicate}(x)$

\ldots

$\text{Feature}_1(x, c_{n1}) \land \ldots \land \text{Feature}_k(x, c_{mk}) \Rightarrow \text{QueryPredicate}(x)$
Expressivity of the model

Dilemma

Curse of dimensionality...

Linear model with number of parameters linear in \(k \)

\[
\text{Feature}_1(x,+f_1) \Rightarrow \text{QueryPredicate}(x)
\]

\[
\ldots
\]

\[
\text{Feature}_k(x,+f_k) \Rightarrow \text{QueryPredicate}(x)
\]
We propose a re-parametrization of MLNs by computing each weight w_i as a function of variables of each specific grounding c_{ij}:

\[
P(Y = y | X = x) = \frac{\exp \left(\sum_{F_i \in F_y} w_i n_i(x, y) \right)}{Z_x}
\]

\[
P(Y = y | X = x) = \frac{\exp \left(\sum_{F_i \in F_y} \sum_j w_i(c_{ij}, \theta_i) n_j(x, y) \right)}{Z_x}
\]
Markov Logic Networks with grounding-specific weights

The weights $w_i(c_{ij}, \theta_i)$ can be computed in several ways:

- using Multi-Layered Perceptrons (MLPs), by taking as input an encoding of the grounding c_{ij}

- **Inference** algorithms do not change.

- **Learning** algorithm can implement gradient descent:

$$
\frac{\partial P_w(y|x)}{\partial \theta_k} = \frac{\partial P_w(y|x)}{\partial w_i} \frac{\partial w_i}{\partial \theta_k}
$$

where the **first** term is computed by MLN inference and the **second** one is computed by backpropagation.
In the case of MAP inference:

$$\frac{\partial P_w(y|x)}{\partial w_i} = n_i(x, y) - n_i(x, y^*_w)$$

where $n_i(x, y^*_w)$ is the number of satisfied groundings in maximum probability world (x, y^*_w).

The gradient is equal to 0 if the maximum probability state of the grounding matches its target, and $+1$ or -1 if they disagree.

MAP inference actively selects examples for the MLP training.
The data set

We used the same data set as in [Baldi & Cheng 2005]:

- 916 sequences
- 48,996 β-residues
- 31,638 β-residue pairs (≈ 3,000,000 negative examples)
- 10-fold cross validation

Four query predicates:

- Partners(residue,residue)
- StrandContact(strand,strand)
- ParallelContact(strand,strand)
- AntiParallelContact(strand,strand)
The model: hard rules

Some basic properties...

- **Anti-reflexivity:**

 \[\neg \text{Partners}(r, r) \]

- **Symmetry:**

 \[\text{Partners}(r_1, r_2) \Rightarrow \text{Partners}(r_2, r_1) \]

- **No partners belonging to same strand:**

 \[
 \begin{align*}
 \text{BelongsToStrand}(r_1, s) \land \\
 \text{BelongsToStrand}(r_2, s)
 \Rightarrow \neg \text{Partners}(r_1, r_2)
 \end{align*}
 \]

- **A residue can’t have two partners belonging to same strand:**

 \[
 \begin{align*}
 \text{Partners}(r_1, r_2) \land \\
 \text{BelongsToStrand}(r_2, s) \land \\
 \text{BelongsToStrand}(r_3, s)
 \Rightarrow \neg \text{Partners}(r_1, r_3)
 \end{align*}
 \]
The model: more complex rules

Modeling more complex patterns...

- No crossing edges:
 \[\text{Partners}(i,j) \land \text{Partners}(i+1,j+1) \Rightarrow \neg \text{Partners}(i-1,j+2) \]

- Anti-transitivity of coarse contacts:
 \[\text{StrandContact}(si,sj) \land \text{StrandContact}(sj,sk) \Rightarrow \neg \text{StrandContact}(si,sk) \]

- Adjacency in parallel sheets:
 \[\text{Partners}(i,j) \land \text{ParallelContact}(si,sj) \Rightarrow \text{Partners}(i+1,j+1) \]

- Adjacency in anti-parallel sheets:
 \[\text{Partners}(i,j) \land \text{AntiParallelContact}(si,sj) \Rightarrow \text{Partners}(i+1,j-1) \]
The model: more complex rules

- **β-hairpin motif:**
 \[
 \text{LastOfSeg}(r_1,s_1) \land \text{FirstOfSeg}(r_2,s_2) \land \\
 \text{DistanceLessThanSix}(s_1,s_2) \land \\
 \text{GlycineWithin}(s_1,s_2) \Rightarrow \text{Partners}(r_1,r_2)
 \]

- **β-α-β motif:**
 \[
 \text{Length}(s_1,n) \land \text{Length}(s_2,n) \land \\
 \text{HelixWithin}(s_1,s_2) \land \text{FirstOfStr}(f_1,s_1) \land \\
 \text{FirstOfStr}(f_2,s_2) \Rightarrow \text{Partners}(f_1,f_2)
 \]
In our experiments we plugged-in grounding-specific weights from BetaPro first-stage (2D-RNN) for the basic rule:

\[\text{Window}(i, w_i) \land \text{Window}(j, w_j) \Rightarrow \text{Partners}(i, j) \]

- \(w_i(c_{ij}, \theta_i) = \logit(p_{ij}) \)
- \(p_{ij} \in [0, 1] \) is the probability computed by BetaPro.

The other weights were learned by stochastic gradient ascent

- each protein produces a different Markov Random Field
- the total number of weights (rules) of the MLN is 66
The model: a second-stage MLN

Problem

- Some rules satisfied by making the antecedent false:

\[\text{Partners}(i,j) \land \text{ParallelContact}(si,sj) \Rightarrow \text{Partners}(i+1,j+1) \]

- This can produce an **under-prediction** of partners (low recall)

Solution

- Second refinement MLN: links predicted at first level become evidence (introduced as new “CandidatePartners” predicate)

\[\text{CandidatePartners}(i,j) \land \text{ParallelContact}(si,sj) \Rightarrow \text{Partners}(i+1,j+1) \]
Results obtained on 10-fold cross validation

- Measuring performance is not easy
- [Baldi & Cheng 2005] use $F_1 = \frac{2PR}{P+R}$ at residue level
- Need more detailed measures
- Protein-level scores are usual in these tasks

We consider coarse (strand-strand) predictions and measure the percentage C_x of correct proteins with less than $x\%$ missed edges
Results obtained on 10-fold cross validation

Residue-level predictions

<table>
<thead>
<tr>
<th></th>
<th>BetaPro</th>
<th>MLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>40.9</td>
<td>43.0</td>
</tr>
</tbody>
</table>

Coarse-level predictions

<table>
<thead>
<tr>
<th></th>
<th>BetaPro</th>
<th>MLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{10}</td>
<td>46.6</td>
<td>54.8</td>
</tr>
<tr>
<td>C_{20}</td>
<td>84.3</td>
<td>87.3</td>
</tr>
<tr>
<td>C_{50}</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Differences are statistically significant with p-value < 0.01.
Examples: comparison with BetaPro

Mistakes in coarse map (1)

- PDB entry 1B33N

![Graph comparison between BetaPro and MLN models]
Examples: comparison with BetaPro

Mistakes in coarse map (2)
- PDB entry 1BIKA

\[
\begin{align*}
\text{TRUE} & : T \rightarrow S \rightarrow R \rightarrow Y \rightarrow F \rightarrow Y \rightarrow N \\
\text{BETAPRO} & : T \rightarrow S \rightarrow R \rightarrow Y \rightarrow F \rightarrow Y \rightarrow N
\end{align*}
\]
Examples: comparison with BetaPro

Gaps

- PDB entry 1ESRA

PDB entry 1ESRA
Encouraging results, but there is still a lot of work to be done

Use of Multi-Layered Perceptrons for predicting ground-specific weights, performing joint training with MLN

Multitask learning scheme: β-partners jointly predicted with secondary structure and/or solvent accessibility

Measure improvement on 3D reconstruction

Application to many other bioinformatics problems (e.g. metal binding sites)