An information-dynamic model of melodic segmentation

Marcus T. Pearce, Daniel Müllensiefen and Geraint A. Wiggins

Centre for Cognition, Computation and Culture
Goldsmiths, University of London, UK
- melodic grouping (single level)
- e.g., Mozart Symphony 40 in G minor
 [Lerdahl and Jackendoff, 1983]

sequences of elements e from an alphabet \mathcal{E}

model: $p(e_i|e_{i-1}^{i-1})$

Information content (unexpectedness):

$$h(e_i|e_{i-1}^{i-1}) = \log_2 \frac{1}{p(e_i|e_{i-1}^{i-1})}.$$

Entropy (uncertainty):

$$H(e_{i-1}^i) = \sum_{e \in \mathcal{E}} p(e_i|e_{i-1}^{i-1}) h(e_i|e_{i-1}^{i-1}).$$
- *n*-gram model
- combines models of different order
- uses a long- and short-term models
- estimates the probability of an event based on its pitch and onset (IOI and preceding silence).
- 10-fold cross-validation for training/testing
- [Pearce, 2005]
focus here on information content profile
we interpret this as a boundary strength profile s_n

pick peaks in the profile at locations where:

1. $S_n > S_{n-1}$
2. $S_n \geq S_{n+1}$

$$S_n > k \sqrt{\frac{\sum_{i=1}^{n-1} (w_i S_i - \overline{S}_{w,1\ldots n-1})^2}{\sum_{i=1}^{n-1} w_i}} + \frac{\sum_{i=1}^{n-1} w_i S_i}{\sum_{i=1}^{n-1} w_i}.$$
Experimental Psychology: infants/adults segment syllable/tone sequences on the basis of local statistics [Saffran et al., 1999]

Cognitive Linguistics: difficulty of word comprehension related to information content [Levy, 2008] and entropy [Hale, 2006];

Machine Learning: algorithms based on information content and entropy can identify word boundaries with some success [Brent, 1999, Cohen et al., 2007]
IDyOM: with $k = 2$

Grouper: [Temperley, 2001]

LBDM: [Cambouropoulos, 2001] with $k = 0.5$

GPR2a: [Lerdahl and Jackendoff, 1983] with $k = 0.5$

GPR2b: [Lerdahl and Jackendoff, 1983] with $k = 0.5$

GPR3a: [Lerdahl and Jackendoff, 1983] with $k = 0.5$

GPR3d: [Lerdahl and Jackendoff, 1983] with $k = 2.5$

Always: every note falls on a boundary

Never: no note falls on a boundary

k optimised from set $\{0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4\}$
Essen Folk Song Collection: Erk

- 1705 German folk melodies
- 78,995 sounding events
- average of 46 events per melody

annotated with phrase boundaries by musicologists

- 12% of notes fall on boundaries
<table>
<thead>
<tr>
<th>Model</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>0.87</td>
<td>0.56</td>
<td>0.66*</td>
</tr>
<tr>
<td>Grouper</td>
<td>0.71</td>
<td>0.62</td>
<td>0.66*</td>
</tr>
<tr>
<td>LBDM</td>
<td>0.70</td>
<td>0.60</td>
<td>0.63*</td>
</tr>
<tr>
<td>GPR2a</td>
<td>0.99</td>
<td>0.45</td>
<td>0.58*</td>
</tr>
<tr>
<td>IDyOM</td>
<td>0.76</td>
<td>0.50</td>
<td>0.58*</td>
</tr>
<tr>
<td>GPR2b</td>
<td>0.47</td>
<td>0.42</td>
<td>0.39</td>
</tr>
<tr>
<td>GPR3a</td>
<td>0.29</td>
<td>0.46</td>
<td>0.35</td>
</tr>
<tr>
<td>GPR3d</td>
<td>0.66</td>
<td>0.22</td>
<td>0.31</td>
</tr>
<tr>
<td>Always</td>
<td>0.13</td>
<td>1.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Never</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
GPR2a does well - importance of rests
LBDM/Grouper comparable to other studies
Hybrid model outperforms its component models
Information dynamic model performs surprisingly well
 - developed as a model of pitch prediction
 - not optimised for melodic grouping
focus on boundaries not indicated by rests
use boosting to create a hybrid model
 - optimise viewpoints for segmentation
 - other information dynamic measures
 - entropy
 - predictive information
explicit Bayesian models of phrase segmentation [Brent, 1999]
References I

An efficient, probabilistically sound algorithm for segmentation and word discovery.

The local boundary detection model (LBDM) and its application in the study of expressive timing.

Voting experts: An unsupervised algorithm for segmenting sequences.

Uncertainty about the rest of the sentence.

A Generative Theory of Tonal Music.
MIT Press, Cambridge, MA.

Expectation-based syntactic comprehension.
Cognition, 16(3):1126–1177.
References II

Meaning in music and information theory.

University of Chicago Press, Chicago.

The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition.
PhD thesis, Department of Computing, City University, London, UK.

Statistical learning of tone sequences by human infants and adults.

The Cognition of Basic Musical Structures.
MIT Press, Cambridge, MA.