Learning to Sportscast: A Test of Grounded Language Acquisition

David Chen & Raymond Mooney
Department of Computer Sciences
University of Texas at Austin
Motivation

- Constructing annotated corpora for language learning is difficult.
- Children acquire language through exposure to linguistic input in the context of a rich, relevant, perceptual environment.
Goals

- Learn to ground the semantics of language

- Learn language through correlated linguistic and visual inputs

Block
Challenge
Challenge
Challenge

A linguistic input may correspond to many possible events
Overview

- Sportscasting task
- Tactical generation
- Strategic generation
- Human evaluation
Learning to Sportscast

- Robocup Simulation League games
- No speech recognition
 - Record commentaries in text form
- No computer vision
 - Ruled-based system to automatically extract game events in symbolic form
- Concentrate on linguistic issues
Robocup Simulation League
Robocup Simulation League

Pink4’s pass was intercepted by Purple6
Learning to Sportscast

- Learn to sportscast by observing sample human sportscasts
- Build a function that maps between natural language (NL) and meaning representation (MR)
 - NL: Textual commentaries about the game
 - MR: Predicate logic formulas that represent events in the game
Mapping between NL/MR

NL: “Purple3 passes the ball to Purple5”

MR: Pass (Purple3, Purple5)

Semantic Parsing (NL \rightarrow MR) Tactical Generation (MR \rightarrow NL)
Purple goalie turns the ball over to Pink8

Purple team is very sloppy today
Pink8 passes the ball to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8

Pink8 passes back to Pink11

badPass (Purple1, Pink8)
turnover (Purple1, Pink8)
kick (Pink8)
pass (Pink8, Pink11)
kick (Pink11)
kick (Pink11)
ballstopped
kick (Pink11)
pass (Pink11, Pink8)
kick (Pink8)
pass (Pink8, Pink11)
Purple goalie turns the ball over to Pink8

Purple team is very sloppy today

Pink8 passes the ball to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8

Pink8 passes back to Pink11
Robocup Sportscaster Trace

Natural Language Commentary

Purple goalie turns the ball over to Pink8

Purple team is very sloppy today

Pink8 passes the ball to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8

Pink8 passes back to Pink11

Meaning Representation

badPass (Purple1, Pink8)
turnover (Purple1, Pink8)
kick (Pink8)

pass (Pink8, Pink11)
kick (Pink11)

kick (Pink11)
ballstopped

kick (Pink11)

kick (Pink11)

pass (Pink11, Pink8)
kick (Pink8)

pass (Pink8, Pink11)
Purple goalie turns the ball over to Pink8

Purple team is very sloppy today

Pink8 passes the ball to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8

Pink8 passes back to Pink11
Robocup Data

• Collected human textual commentary for the 4 Robocup championship games from 2001-2004.
 – Avg # events/game = 2,613
 – Avg # sentences/game = 509

• Each sentence matched to all events within previous 5 seconds.
 – Avg # MRs/sentence = 2.5 (min 1, max 12)

• Manually annotated with correct matchings of sentences to MRs (for evaluation purposes only).
Overview

- Sportscasting task
- **Tactical generation**
- Strategic generation
- Human evaluation
Tactical Generation

- Learn how to generate NL from MR
- Example:
 \[\text{Pass(Pink2, Pink3)} \rightarrow \text{“Pink2 kicks the ball to Pink3”} \]
- Two steps
 1. Disambiguate the training data
 2. Learn a language generator
System Overview

Sportscaster **Robocup Simulator**

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Turnover (purple7, pink2)
Pass (pink2)
Kick (pink2)
Pass (pink5, pink8)
Ballstopped
Kick (pink8)

Ambiguous Training Data
System Overview

Sportscaster Robocup Simulator

Pass (Purple5, Purple7)
Turnover (purple7 , pink2)
Kick (pink2)
Pass (pink2 , pink5)
Kick (pink5)
Pass (pink5 , pink8)
Ballstopped
Kick (pink8)

Ambiguous Training Data

Initial Semantic Parser

Semantic Parser Learner
System Overview

Sportscaster Robocup Simulator

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Pass (purple5, purple7)
Turnover (purple7, pink2)
Kick (pink2)
Pass (pink2, pink5)
Kick (pink5)
Pass (pink5, pink8)
Ballstopped
Kick (pink8)

Unambiguous Training Data

Initial Semantic Parser

Purple7 loses the ball to Pink2
Kick (pink2)
Pink2 kicks the ball to Pink5
Pass (pink2, pink5)
Pink5 makes a long pass to Pink8
Kick (pink5)
Pink8 shoots the ball
Kick (pink8)
System Overview

Sportscaster

Robocup Simulator

Ambiguous Training Data

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Unambiguous Training Data

Pass (purple5, purple7)
Turnover (purple7, pink2)
Kick (pink2)
Pass (pink2, pink5)
Kick (pink5)
Pass (pink5, pink8)
Ballstopped
Kick (pink8)

Semantic Parser

Semantic Parser Learner
System Overview

Sportscaster Robocup Simulator

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Turnover (purple7, pink2)
Pass (pink2, pink5)
Kick (pink5)

Ambiguous Training Data

Semantic Parser

Unambiguous Training Data

Semantic Parser Learner
System Overview

Sportscaster

Robocup Simulator

Ambiguous Training Data

Unambiguous Training Data

Semantic Parser

Semantic Parser Learner
System Overview

Sportscaster Robocup Simulator

Ambiguous Training Data

Purple7 loses the ball to Pink2
Pink2 kicks the ball to Pink5
Pink5 makes a long pass to Pink8
Pink8 shoots the ball

Turnover (purple7, pink2)
Pass (pink2, pink5)
Pass (pink5, pink8)
Kick (pink8)

Unambiguous Training Data

Pass (purple5, purple7)
Turnover (purple7, pink2)
Kick (pink2)
Pass (pink2, pink5)
Kick (pink5)
Pass (pink5, pink8)
Ballstopped
Kick (pink8)

Semantic Parser Learner

Semantic Parser
Semantic Parser Learners

• Learn a function from NL to MR

NL: “Purple3 passes the ball to Purple5”

MR: Pass (Purple3, Purple5)

• We experiment with two semantic parser learners
 – WASP (Wong & Mooney, 2006; 2007)
 – KRISP (Kate & Mooney, 2006)
WASP: Word Alignment-based Semantic Parsing

• Uses statistical machine translation techniques
 – Synchronous context-free grammars (SCFG) (Wu, 1997; Melamed, 2004; Chiang, 2005)
 – Word alignments (Brown et al., 1993; Och & Ney, 2003)

• Capable of both semantic parsing and tactical generation
KRISP: Kernel-based Robust Interpretation by Semantic Parsing

- Productions of MR language are treated like semantic concepts
- SVM classifier is trained for each production with string subsequence kernel
- These classifiers are used to compositionally build MRs of the sentences
- More resistant to noisy supervision but incapable of tactical generation
Matching

• Ability to find correct NL/MR pair
• 4 Robocup championship games from 2001-2004.
 – Avg # events/game = 2,613
 – Avg # sentences/game = 509
• Leave-one-game-out cross-validation
• Metric:
 – **Precision**: % of system’s annotations that are correct
 – **Recall**: % of gold-standard annotations correctly produced
 – **F-measure**: Harmonic mean of precision and recall
Systems

<table>
<thead>
<tr>
<th>Learner</th>
<th>KRISP</th>
<th>WASP</th>
<th>WASP’s language generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRISPER (Kate & Mooney, 2007)</td>
<td>KRISP</td>
<td>WASP</td>
<td>WASP’s language generator</td>
</tr>
</tbody>
</table>
KRISPER and WASPER

Sportscaster

Robocup Simulator

Unambiguous Training Data

Ambiguous Training Data

Semantic Parser Learner (KRISP/WASP)
<table>
<thead>
<tr>
<th>Systems</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRISPER</td>
<td>KRISP</td>
</tr>
<tr>
<td>(Kate & Mooney, 2007)</td>
<td>Wasp</td>
</tr>
<tr>
<td>WASPER</td>
<td></td>
</tr>
<tr>
<td>WASPER-GEN</td>
<td>WASP’s language generator</td>
</tr>
</tbody>
</table>
WASPER-GEN

Sportscaster

Robocup Simulator

Ambiguous Training Data

- Purple7 loses the ball to Pink2
- Pink2 kicks the ball to Pink5
- Pink5 makes a long pass to Pink8
- Pink8 shoots the ball

Turnover (purple7, pink2)
Pass (pink2, pink5)
Kick (pink5)
Kick (pink8)

Unambiguous Training Data

- Pass (purple5, purple7)
- Turnover (purple7, pink2)
- Kick (pink2)
- Pass (pink2, pink5)
- Kick (pink5)
- Pass (pink5, pink8)
- Ballstopped
 Kick (pink8)

Tactical Generator

Tactical Generator Learner (WASP)
Matching Results

Average results on leave-one-game-out cross-validation

- random
- KRISPER
- WASPER
- WASPER-GEN

F-measure
Overview

• Sportscasting task
• Tactical generation
• **Strategic generation**
• Human evaluation
Strategic Generation

• Generation requires not only knowing *how* to say something (tactical generation) but also *what* to say (strategic generation).

• For automated sportscasting, one must be able to effectively choose which events to describe.
Example of Strategic Generation

pass (purple7 , purple6)
ballstopped
kick (purple6)
pass (purple6 , purple2)
ballstopped
kick (purple2)
pass (purple2 , purple3)
kick (purple3)
badPass (purple3 , pink9)
turnover (purple3 , pink9)
Example of Strategic Generation

pass (purple7 , purple6)
ballstopped
kick (purple6)
pass (purple6 , purple2)
ballstopped
kick (purple2)
pass (purple2 , purple3)
kick (purple3)
badPass (purple3 , pink9)
turnover (purple3 , pink9)
Strategic Generation

• For each event type (e.g. pass, kick) estimate the probability that it is described by the sportscaster.

• Requires correct NL/MR matching
 – Use estimated matching from tactical generation
 – Iterative Generation Strategy Learning
Iterative Generation Strategy Learning (IGSL)

- Directly estimates the likelihood of an event being commented on
- Self-training iterations to improve estimates
- Uses events not associated with any NL as negative evidence
Strategic Generation Performance

• Evaluate how well the system can predict which events a human comments on

• Metric:
 – **Precision**: % of system’s annotations that are correct
 – **Recall**: % of gold-standard annotations correctly produced
 – **F-measure**: Harmonic mean of precision and recall
Strategic Generation Results

Average results on leave-one-game-out cross-validation

F-measure

- inferred from WASP
- inferred from KRISPER
- inferred from WASPER
- inferred from WASPER-GEN
- inferred from IGSL
- inferred from gold matching
Overview

- Sportscasting task
- Tactical generation
- Strategic generation
- **Human evaluation**
Human Evaluation
(Quasi Turing Test)

- 4 fluent English speakers as judges
- 8 commented game clips
 - 2 minute clips randomly selected from each of the 4 games
 - Each clip commented once by a human, and once by the machine
- Presented in random counter-balanced order
- Judges were not told which ones were human or machine generated
Demo Clip

• Game clip commentated using WASPER-GEN with IGSL, since this gave the best results for generation.

• FreeTTS was used to synthesize speech from textual output.
Human Evaluation

<table>
<thead>
<tr>
<th>Score</th>
<th>English Fluency</th>
<th>Semantic Correctness</th>
<th>Sportscasting Ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Flawless</td>
<td>Always</td>
<td>Excellent</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
<td>Usually</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Non-native</td>
<td>Sometimes</td>
<td>Average</td>
</tr>
<tr>
<td>2</td>
<td>Disfluent</td>
<td>Rarely</td>
<td>Bad</td>
</tr>
<tr>
<td>1</td>
<td>Gibberish</td>
<td>Never</td>
<td>Terrible</td>
</tr>
</tbody>
</table>
Human Evaluation

<table>
<thead>
<tr>
<th>Score</th>
<th>English Fluency</th>
<th>Semantic Correctness</th>
<th>Sportscasting Ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Flawless</td>
<td>Always</td>
<td>Excellent</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
<td>Usually</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Non-native</td>
<td>Sometimes</td>
<td>Average</td>
</tr>
<tr>
<td>2</td>
<td>Disfluent</td>
<td>Rarely</td>
<td>Bad</td>
</tr>
<tr>
<td>1</td>
<td>Gibberish</td>
<td>Never</td>
<td>Terrible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentator</th>
<th>English Fluency</th>
<th>Semantic Correctness</th>
<th>Sportscasting Ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>3.94</td>
<td>4.25</td>
<td>3.63</td>
</tr>
<tr>
<td>Machine</td>
<td>3.44</td>
<td>3.56</td>
<td>2.94</td>
</tr>
<tr>
<td>Difference</td>
<td>0.5</td>
<td>0.69</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Future Work

- Expand MRs to beyond simple logic formulas
- Apply approach to learning situated language in a computer video-game environment (Gorniak & Roy, 2005)
- Apply approach to captioned images or video using computer vision to extract objects, relations, and events from real perceptual data (Fleischman & Roy, 2007)
Conclusion

- Current language learning work uses expensive, unrealistic training data.
- We have developed a language learning system that can learn from language paired with an ambiguous perceptual environment.
- We have evaluated it on the task of learning to sportscast simulated Robocup games.
- The system learns to sportscast almost as well as humans.