No-Regret Learning in Convex Games

Geoff Gordon, Amy Greenwald, Casey Marks
Background

- No-regret algorithms can learn well, even in adversarial environments.
- Seems useful for learning in a repeated game.
- Well-known result: no-regret learners reach minimax equilibrium in zero-sum normal-form games.
- More recent: no-internal-regret learners reach correlated equilibrium in general-sum normal-form games.
Normal-form picture

Regret

no external ↔ no internal

coarse correlated ← correlated

Equilibrium
This talk

- What about games with more structure?
- E.g., extensive-form games
- E.g., classification or regression
- In general, convex games
Convex games (known)

Regret

no external \iff

$\upharpoonleft\upharpoonright$

coarse cor. \iff

\iff no swap

$\upharpoonleft\upharpoonright$

\iff correlated

Equilibrium
Convex games (contrib)

Regret

no external \iff no EF \iff no linear \iff no FE \iff no swap

coarse cor. \iff EFCE \iff “linear” \iff “FE” \iff correlated

Equilibrium
Convex games (contrib)

Regret

no external ⇐ no EF ⇐ no linear ⇐ no FE ⇐ no swap

EFCE ⇐ “linear” ⇐ “FE” ⇐ correlated

Equilibrium

all equivalent in matrix games
Convex games (contrib)

Regret

no external \iff no EF \iff no linear \iff no FE \iff no swap

\updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow

coarse cor. \iff EFCE \iff “linear” \iff “FE” \iff correlated

efficient algorithms

Equilibrium
Convex games (contrib)

Regret

- no external \iff no EF \iff no linear \iff no FE \iff no swap
- coarse cor. \iff EFCE \iff “linear” \iff “FE” \iff correlated

Equilibrium

efficient algorithms
Outline

• Convex games and OCPs
• Regret and Φ-regret
• Algorithm
• Making it fast
• Summary & related work
Convex games

- Generalization of normal-form games, extensive-form games, ...
- N players, convex action sets A_i
- $\text{Loss}(i) = c(a_{-i}) \cdot a_i$
- E.g., $A_i = \text{simplex}: \text{normal-form game}$
Online convex programs

- Single agent’s view of repeated convex game
- Convex feasible region A
- Alternately choose action, see cost vector
 - $a_1 \rightarrow c_1 \rightarrow a_2 \rightarrow c_2 \rightarrow \ldots$
- Total cost = $a_1 \cdot c_1 + a_2 \cdot c_2 + \ldots$
- If $A =$ simplex: “expert advice” problem
External regret

$$\rho_t = \sum c_t \cdot a_t - \min_{a \in A} \sum c_t \cdot a$$

= (observed cost) – (cost of best action post-hoc)
Action transformations

- Function \(\varphi: A \mapsto A \)
- maps OCP’s feasible region to itself
- E.g., linear fn mapping unit square into itself

\[
\begin{pmatrix}
\pm p & \pm (1-p) \\
\pm q & \pm (1-q)
\end{pmatrix}
\]

\(p, q \in [0,1] \)
Action transformations

- Function $\varphi: A \mapsto A$
- maps OCP’s feasible region to itself
- E.g., linear fn mapping unit square into itself

$\begin{pmatrix} \pm p & \pm (1-p) \\ \pm q & \pm (1-q) \end{pmatrix}$

$p, q \in [0,1]$
Φ-regret

$$\rho_t = \sum c_t \cdot a_t - \min \sum c_t \cdot \varphi(a_t)$$

$$\varphi \in \Phi$$

= (observed cost) − (cost of best transformation post-hoc)
Regret examples

- $\Phi = \text{constant transformations (}= \text{external})$
- $\Phi = \text{all measurable transformations (}= \text{swap})$
- $\Phi = \text{linear transformations}$
$\Phi = \text{finite element}$
\(\Phi = \text{EF transformations} \)

- Extensive-form correlated equilibrium
- No time for these—come to the poster!
Algorithm idea
Algorithm idea

- Reduce the no-Φ-regret problem for A to a no-external-regret problem on a more-complicated feasible region
Algorithm idea

- Reduce the no-Φ-regret problem for A to a no-external-regret problem on a more-complicated feasible region
- Namely, Φ, considered as a subset of a vector space
Algorithm

\[a_1 \rightarrow c_1 \rightarrow a_2 \rightarrow c_2 \rightarrow a_3 \rightarrow c_3 \rightarrow \ldots \]

- Get first play \(\varphi_1 \) from NER subroutine
- For \(t = 1, 2, \ldots \)
 - Find fixed point \(a_t \) of \(\varphi_t \), play \(a_t \)
 - Observe \(c_t \)
 - Construct \(m_t(\varphi) = c_t \cdot \varphi(a_t) \)
 - Give \(m_t, \varphi_t \) to NER subroutine, get \(\varphi_{t+1} \)
Algorithm

\[a_1 \rightarrow c_1 \rightarrow a_2 \rightarrow c_2 \rightarrow a_3 \rightarrow c_3 \ldots \]

\[\varphi_1 \rightarrow m_1 \rightarrow \varphi_2 \rightarrow m_2 \rightarrow \varphi_3 \rightarrow m_3 \ldots \]

• Get first play \(\varphi_1 \) from NER subroutine
• For \(t = 1, 2, \ldots \)
 • Find fixed point \(a_t \) of \(\varphi_t \), play \(a_t \)
 • Observe \(c_t \)
 • Construct \(m_t(\varphi) = c_t \cdot \varphi(a_t) \)
 • Give \(m_t, \varphi_t \) to NER subroutine, get \(\varphi_{t+1} \)
Algorithm

1. Get first play φ_1 from NER subroutine
2. For $t = 1, 2, \ldots$
 - Find fixed point a_t of φ_t, play a_t
 - Observe c_t
 - Construct $m_t(\varphi) = c_t \cdot \varphi(a_t)$
 - Give m_t, φ_t to NER subroutine, get φ_{t+1}
Algorithm

- $a_1 \rightarrow c_1$, $a_2 \rightarrow c_2$, $a_3 \rightarrow c_3$, ...
- \uparrow, \downarrow, \uparrow, \downarrow, \uparrow, \downarrow, ...
- φ_1, $m_1 \rightarrow \varphi_2$, $m_2 \rightarrow \varphi_3$, m_3, ...

- Get first play φ_1 from NER subroutine
- For $t = 1, 2, ...$
 - Find fixed point a_t of φ_t, play a_t
 - Observe c_t
 - Construct $m_t(\varphi) = c_t \cdot \varphi(a_t)$
 - Give m_t, φ_t to NER subroutine, get φ_{t+1}

Geoff Gordon, Amy Greenwald, Casey Marks—No Regret in Convex Games
Theorem

- The algorithm achieves no Φ-regret
- It runs in poly time if its subroutines do
Proof of no Φ-regret

\[
\forall \varphi \in \Phi, \sum m_t(\varphi_t) \leq \sum m_t(\varphi) + o(T)
\]

\[
\sum c_t \cdot \varphi_t(a_t) \leq \sum c_t \cdot \varphi(a_t) + o(T)
\]

\[
\sum c_t \cdot a_t \leq \sum c_t \cdot \varphi(a_t) + o(T)
\]
Making it fast

- Φ may be a complex set
- Expensive to achieve no external regret
- Solution: use (half of) the kernel trick to get efficient linear representation
Half of kernel trick

- Nonlinear function $\varphi(a)$
- Represent as $\varphi(a) = M_\varphi \circ K(a)$

 adjustable linear fn

 fixed nonlinearity
Kernelized $\Phi \Rightarrow$ fast

- For any $\varphi \in \Phi$
 - $m_t(\varphi) = c_t \cdot M_\varphi \ K(a_t) = \text{tr}((K(a_t) \ c_t^T) \ M_\varphi)$
 - I.e., $m_t(\varphi)$ is a linear function of M_φ
 - And, $\mathcal{M} = \{ \text{feasible } M_\varphi \}$ is convex
 - Standard OCP \Rightarrow standard OCP algorithms
Theorem

• If we play only vertices of mesh, and achieve no FE-regret, we also have no swap regret

• We can extend our algorithm by “warping” its plays to nearby vertices, while preserving regret guarantees

⇒ efficient algorithm to learn CE
Summary

Regret

no external \iff no EF \iff no linear \iff no FE \iff no swap

coarse cor. \iff EFCE \iff “linear” \iff “FE” \iff correlated

efficient algorithms

Equilibrium

FE \Rightarrow swap if “careful”
Summary

Regret

- no external \iff no EF \iff no linear \iff no FE \iff no swap

- coarse cor. \iff EFCE \iff “linear” \iff “FE” \iff correlated

Efficient algorithms:

1st efficient no-EF-regret learner
Summary

Regret

no external ⇛ no EF ⇛ no linear ⇛ no FE ⇛ no swap

coarse cor. ⇛ EFCE ⇛ “linear” ⇛ “FE” ⇛ correlated

Equilibrium

1st efficient no-EF-regret learner

efficient algorithm

exponentially-more-efficient CE
Related work

- Blum & Mansour [2005]
 - fixed-point trick for normal-form learners
- Stoltz & Lugosi [2007]
 - nice analysis of Φ-regret in OCPs
 - first algorithm for $\Phi = \text{swap}$
Related work

- Hazan & Kale [simultaneous w/ us]
 - proposed non-kernelized version of algorithm
 - nice reduction between finding fixed points and achieving no Phi-regret
 - lack of kernel trick slows implementation by arbitrarily large factor
Thanks!