Actively Learning Level-Sets of Composite Functions

Brent Bryan, Jeff Schneider
Motivation: Statistical Analysis

- Models may be expensive to compute!
- common parameter space Θ
 - τ, Ω_M, Ω_Λ, ω_B, ω_{DM}, n_s, f_γ, b
- hypothetical x

Goal:
- Minimal jointly valid $1-\alpha$ confidence regions for parameters

CMB Model
- WMAP Data (Astier et al. 2006)
 - Statistical Test p-value

Supernova Model
- Supernova Data (Davis et al. 2007)
 - Statistical Test p-value

LSS Model
- LSS Data (Tegmark et al. 2006)
 - Statistical Test p-value

combined p-value
Many ways to combine p-values:
- Bonferroni’s method, inverse normal, inverse logit

Fisher’s Method (Fisher 1932):
\[-2 \sum_{i=1}^{m} \log(p_i(x)) \geq C\]
where C is the critical value of a \(\chi^2_{2m}\) distribution

\[f_i(x) = -2 \log(p_i(x))\]
The Level-Set Problem

Where does $f(x) = 11$?
The Level-Set Problem

Where does $f(x) = 11$?

Could pick points randomly, or uniformly

True Boundary

Predicted Boundary
The Level-Set Problem

Where does \(f(x) = 11 \)?

Use samples to estimate \(f \): \(\hat{f}, \hat{\sigma}^2(x) \)

Could try:
- entropy,
- variance,
- misclassification probability,
- etc.

“Straddle” heuristic works best (Bryan et al. 2005)
The Level-Set Problem

"Straddle" heuristic
Pick x which maximizes:

$$\text{straddle}(x) = 1.96\hat{\sigma}^2(x) - \left| \hat{f}(x) - t \right|$$

Mix variance and entropy.

t
But what if we use more information?

Suppose f was the sum of other observable functions:

$$f(x) = \sum_{i=1}^{m} f_i(x)$$
The Level-Set Problem

But what if we use more information?

Suppose \(f \) was the sum of other observable functions:

\[
f(x) = \sum_{i=1}^{m} f_i(x)
\]

"Combined Straddle" heuristic

Pick \(x \) which maximizes:

\[
1.96 \sum_{i=1}^{m} \hat{\sigma}_i^2(x) - \sum_{i=1}^{m} f_i(x) - t
\]

But, we want to minimize samples…
The Level-Set Problem

"Combined Straddle" heuristic

Pick x which maximizes:

\[
1.96 \sum_{i=1}^{m} \hat{\sigma}_i^2(x) - \left| \sum_{i=1}^{m} \hat{f}_i(x) - t \right|
\]

But, we want to minimize samples...

How can we take advantage of this intuition?

This sample gives full information!

Is \(f(x) \leq t\)?
Level-Set Problem Summary

Single Function Case:
- Use straddle heuristic to balance exploration and exploitation
- \[1.96 \hat{\sigma}^2(x) - |\hat{f}(x) - t| \]
- Mimics information gain

Multiple Function Case:
- Only sample one \(f_i \)
- Don’t expect to reduce the variance by \(\hat{\sigma}^2(x) \) but \(\hat{\sigma}^2_i(x) \)
- A better estimate of the knowledge gained is:

\[
\max_i 1.96 \hat{\sigma}^2_i(x) - \left| \sum_{i=1}^{m} \hat{f}_i(x) - t \right|
\]
Algorithm Outline

Parameter space, \(\Theta \) → Generate candidates

Datasets: \(\{x, f_i(x)\} \) → Regression models

One for each \(f_i \)

Choose \(x, f_i \) → Compute \(f_i(x) \)

Possible Heuristics:
- random
- variance
- combined-straddle
- Var-MaxVarStraddle

Gaussian process
Gaussian process regression models
One for each \(f_i \)
2D Example

Use colors to denote samples
Possible Sampling Heuristics

- Random
- Variance
- Combined-Straddle

- blue lines: true level-set

Use straddle to select \(x \), then

\[
\hat{i} = \arg\max \hat{\sigma}_i^2(x)
\]

select \(x \) which maximizes

\[
\max_i 1.96\hat{\sigma}_i^2(x) - \sum_{i=1}^{m} \hat{f}_i(x) - t
\]
Experimental Results

Target function is the composite of 2 observable functions

Target function is the composite of 4 observable functions
Application: Cosmology

Models may be expensive to compute!

τ, Ω_M, Ω_Λ, ω_B, ω_DM, n_s, f_ν, b

common parameter space Θ

hypothetical x

CMB Model

WMAP Data (Astier et al. 2006)

Supernova Model

Supernova Data (Davis et al. 2007)

LSS Model

LSS Data (Tegmark et al. 2006)

Statistical Test p-value

combined p-value

Goal: Minimal jointly valid 1-α confidence regions for parameters
Application: Cosmology

Supernova

- $x = \{H_0, \Omega_M, \Omega_\Lambda\}$
- $x_1 = \{65, 0.23, ?\}$
- $\exists \Omega_\Lambda \text{ s.t. } p(x) \geq \alpha$

$95\% \chi^2$ confidence regions from supernova based on Davis et al. (2007) data
Conservative estimate

\(\forall x \in X: \exists x \text{ s.t. } x \text{ in square and } p(x) \geq \alpha \)

Square included if any cell has \(x \) such that \(p(x) \geq \alpha \)

\[x = \{65, 0.23, \cdot \} \]
Application: Cosmology

- **CMB**
 - Ω_M vs Ω_Λ
 - 1.2 billion samples on uniform grid

- **Supernova**
 - Ω_M vs Ω_Λ
 - Color Key:
 - $\frac{1}{2}\sigma$: 38%
 - 1σ: 68%
 - $1\frac{1}{2}\sigma$: 86%
 - 2σ: 95%

- **Large Scale Structure**
 - Ω_M vs Ω_Λ

- **Combined**
 - Ω_M vs Ω_Λ
 - 3 million samples using Var-MaxVar Straddle
Conclusions

• Extended Straddle algorithm to multiple datasets

• Showed that combining p-values can be written as the sum of observable functions

• Deriving confidence regions this way:
 – Results in smaller regions (than intersection of marginals)
 – Is much more sample efficient than uniform sampling