From Web 2.0 to Semantic Web

A Semi-Automated Approach

Andreas Heß, Christian Maaß and Francis Dierick

Lycos Europe

01/06/2008
Outline

» Motivation

» Proposals for better tagging

» Tag suggestion / semi-automated tagging

» Tag merging

» Conclusion
Motivation

» Ontologies: high entrance barriers for ordinary users
» Folksonomies: widely used, low entrance barriers

Goals

» Draw benefits from complementary nature
» Improve quality of folksonomies
 » Annotations
 » Tag Cloud
» Eventually merge folksonomies and ontologies
Moving from Folksonomies to Ontologies: Tag Quality

Tag Merging: Eliminate duplicates / synonyms / misspellings / nonsense

- computer
- Lycos
- Germany
- politics
- clock
- history
- Alt
- Angela Merkel
- Europe
- historyo
- member of parliament
- Tiger
- Berlin
- CPU
- hard drive
- watches
- hard drives
- computers
- software
- screen
- ugagua
- hardware
- MP
- Techno
Moving from Folksonomies to Ontologies: Tag Quality

Tag Merging: Eliminate duplicates / synonyms / misspellings / nonsense

- computer
- Lycos
- Germany
- politics
- clock
- Tiger
- Berlin
- CPU
- hard drive
- hard drives
- computers
- history
- histryo
- historyo
- ugagua
- hardware
- software
- screen
- watch
- member of parliament
- Techno
- MP
Moving from Folksonomies to Ontologies: Tag Quality

Tag Merging: Eliminate duplicates / synonyms / misspellings / nonsense
Moving from Folksonomies to Ontologies: Tag Quality

Topic Detection

- CPU
- Berlin
- Tiger
- Lycos
- Germany
- politics
- clock
- history
- Alt
- Angela Merkel
- Europe
- MP
- member of parliament
- Techno
- computers
- software
- screen
- hard drives
- watch
Moving from Folksonomies to Ontologies: Tag Quality

Topic Detection
Moving from Folksonomies to Ontologies: Tag Quality

Relation Extraction

Diagram:
- CPU
- hard drives
- computers
- software
- screen
- hardware
Moving from Folksonomies to Ontologies: Tag Quality

Relation Qualification

- CPU
- hard drives
- hardware
- computers
- software
- screen

relationships:
- is a
- part of
Proposed Measures

» Semi-Automated Tagging
 » Lower the threshold towards creating meta-data

» Tag Merging
 » Improving tag quality

» Extract Relations
 » First step on the move from folksonomies to more structured form

» User Rating
 » Involve user in refining quality

» Information Extraction
 » Automatically fill blanks
Proposed Measures

» Semi-Automated Tagging
 » Lower the threshold towards creating meta-data

» Tag Merging
 » Improving tag quality

» Extract Relations
 » First step on the move from folksonomies to more structured form

» User Rating
 » Involve user in refining quality

» Information Extraction
 » Automatically fill blanks
Semi-Automated Tagging

» Text classification, training data needed
» Semi-automated annotation of very short texts
Choice of Classification Algorithm

» **Speed** is important
 » Interactive: user does not want to wait

» Use well-known **Rocchio** text classification algorithm
 » Simple, fast, incremental, suitable for high number of classes
 » Works well only if texts are short and of similar length
 » ... but this is the case here

» Use **part-of-speech-tagger** for dimensionality reduction
 » Only nouns and proper nouns
Evaluation (I): Precision

» Tested precision with 4 test users

» Original tagging far from perfect

» Suggestion quality not great

» But good enough for interactive use

» In 87% at least one correct prediction within top 5
Evaluation (II): absolute numbers

» More correct suggestions than original tags *in total*

» Assumption: People will tag more
Tag Merging

» Goals

» Elimination and merging of incorrectly spelled tags

» Merging of different spelling variations

» Example

» „computer“ vs. „computers“ (singular/plural)
Tag Merging - Algorithm

- Input Tag
- Spell Checker
- Candidates
- Dictionary
- Similar Tags
- Inspect using different similarity measures

- ABC
- .543
- .334
- .275
- tag
- tag
- tag
- tag
- tag
Tag Merging - Algorithm

Why this extra step?

Input Tag

Dictionary

Candidates

Spell Checker

Similar Tags with score

Inspect using different similarity measures

ABC

.543
.334
.275

...
Tag Merging - Algorithm

- Spell Checker
- Candidates
- Computing similarities is slow
- Pairwise checking is $\Theta(n^2)$

Input Tag

Dictionary

ABC

Similar Tags

with score

Inspect using different similarity measures
Tag Merging - Algorithm

Inspect using different similarity measures

Levenshtein

Jaro-Winkler

Spell Checker

Candidates

ABC
Tag Relations

Related Tags

Inspect using different similarity measures

Spell Checker Candidates

ABC

computers hard drive weight

hard drive laptop computer

.543 .334 .275 ...

tag .tag .tag
Tag Merging - Algorithm

Input Tag

Dictionary

ABC

Candidates

Spell Checker

Similar Tags with score

Inspect using different similarity measures

Fine-tuning with Machine Learning!
Tag Merging - Evaluation

» Can reach high precision by fine tuning with machine learning

» Trade-off between precision and recall tunable

» Precision in sample (100 tags): 95%

» Fully automated batch processing possible

» With this setting 12% smaller tag cloud
Conclusion

» Proposed ways to combine strengths of folksonomies and ontologies

» Semi-automated Tagging and ...

» Tag Merging to increase folksonomy quality

» Outlined plan for future work
Thank You for Your Attention!

Questions?
Tag Suggestions - Algorithm

Rocchio with dimensionality reduction