Exploring the knowledge in Semi Structured Data Sets with Rich Queries

Jürgen Umbrich
Sebastian Blohm
Overview

- How to use a annotation engine to extract implicit knowledge encoded in semi structured data sets.

- How to discover, in a automatical way, relation patterns between concepts/categories.

- A framework with support for free text search combined with annotation search.

- A user-interface, that hides the complexity of a structured query syntax from the end-user.
Motivation: (Semi-) Structured KBs

- Effort to manage unstructured information in (semi-) structured knowledge bases
 - Encyclopedias, like Wikipedia
 - ODP

- Information management is often maintained either manually and/or in a supervised manner.

- KB's reflect the “wisdom of the crowd” and cover a lot of different domains
Challenges

- Current approaches to **access** information in semi structured KB
 - Keyword search interface
 - Exploring the data set by article and category links or facets
 -> Works well only for small and/or specific data sets

- Inability to incorporate **background knowledge** of users
 - Background knowledge about the domain
 - Knowledge about relations in the result pages
Solution Approach:

- Accessing the KB via freetext search combined with annotation search
 - By extracting implicit knowledge encoded in the KB like *categories and links* between articles,
 - By semantical grounding of extracted information with an ontology
- Support the background knowledge of end-users
 - By automatically extracted relation patterns from the knowledge base
Solution Architecture: Overview
(Semi-)Structured Data Source

- A local Wikipedia dump (current from December 2006)
- Wikipedia categories semantically grounded with the Yago ontology
 - Mapping between Wikipedia categories and the Yago hierarchy
Annotation System (AS)

- Unstructured Information Management Architecture (UIMA)
- Open source Java framework (Sun Java version)
- Various text analysis engines (TAE) build from scratch
 - Sentence and paragraph splitters, tokenizer, etc...
- Easy development of own TAE (in Java)
 - e.g. a simple data annotator or Wikipedia to Yago category mapping
(AS) Article Annotations

Semantically enriched annotations

- Utilising the Yago ontology
- Each wikipedia category is modelled as a hierarchy of yago categories
 e.g. German_computer_scientist -> ... -> scientist -> ... -> person

Wikipedia article of "Karl Steinbuch"
Annotation System (AS)
Relation Pattern Extraction
Semi-semantic relation patterns

Sentence:
Karl Steinbuch studied at the University of Stuttgart and in 1944 he received his PhD in physics.

Extracted Relations: (wikipedia categories grounded to Yago)

- `<person>"studied at the"<university>`
- `<person>"studied at the""and in"<year>`
- `<person>"studied at the""and in""he received his"<degree>`

- Extracting relation between wikipedia categories and their respective Yago categories
 - In sentences and paragraphs
- Relation patterns support query creation in the UI
Crawling - Indexing - Searching

- Integrates UIMA (Version 1.4, current published Version is 2.x)
- Query functionality to combine text with annotation search
- XML-Fragment or Xpath Syntax

Enterprise Search Application
OmniFind
End-User Interface

- Hides the complexity of the underlying query syntax
- Two query creation modes (Simple and Advanced)
- Uses known query concepts (e.g. Textfield and DropDown menu)
- Implementation in Java Swing
User Interface: Simple Mode

![Simple Search Interface](image)

- **Keyword Search Field**
- **Search in Page Title**
- **Result Pages Category**
 - Search for:
 - outgoing links
 - outgoing categories

Simple Search

Keyword-Search:

Page Title: Karl

Page Category: computer_scientist

Result-Pages contain:

Number of Results: 1
Query Time: 1249 ms

Karl Steinbuch

DBPedia
User Interface: Advanced Mode

Advanced Query Interface

Query in XMLF2

```
@xmlf2::'<page category="scientist" /> OR <page category="person" />
+ <s> </title> * <link category="country" >Germany</link> </s>
+ <s> </title> * studied at" * <link category="university" >Stuttgart</link>
   "received" * <link category="degree" /> </s>'
```

Query in words:

- All pages containing
 - pagetype <scientist> OR pagetype <person>
 - a sentence with: a <title> WILDCARD a(n) <country> with label "Germany"
 - a sentence with: a <title> WILDCARD keyword "studied at" WILDCARD a(n) <university> with label "Stuttgart"
 WILDCARD keyword "received" WILDCARD a(n) <degree>

execute Query
Conclusion

- Automatical extraction of (semi) semantic relation patterns from semi structured KB
 - Using text information extraction tools

- Explore and query semi structured KB's with a combination of freetext and annotation search
 - Document or entity centric search
 - Instance and/or concept search
Future Work

- Evaluation of the architecture
 - Annotation time (current measures: ~3sec/doc)
 - Indexing time/size
 - Query time related to query complexity

- Automatical discovery of semantic relation patterns (SRP)
 - e.g. [concept:person] [relation:studiedAt] [concept:university]
 - Automatically build a concept-relation ontology based on the Wikipedia corpus

- Extending UI interoperability capabilities
 - Support the UI with semantic relation patterns
Exploring the knowledge in SemiStructured Data Sets with Rich Queries

Questions?

Contact
juergen@umbrich.net
blohm@aifb.uni-karlsruhe.de

Work was supported by

X-MEDIA

MFG
Stiftung Baden-Württemberg
Article Annotations

- Annotate Wikipedia articles by
 - Title and title occurrences in the article
 - Article categories
 - Links, link title and link categories
 - Date information from various date formats

- Annotation semantically grounded with the Yago ontology
 - Each wikipedia category is modelled as a hierarchy of yago categories
e.g. american_tennis_player -> player -> person -> causal_agent
Sample: Annotated Wikipedia article

Rolf Landauer

From Wikipedia, the free encyclopedia

Rolf Landauer (1927–1999) was an IBM physicist who in 1961 demonstrated that when information is lost in an irreversible circuit, the information becomes entropy and an associated amount of energy is dissipated as heat. This principle is relevant to reversible computing, quantum information, and quantum computing.

Landauer was born on February 4, 1927, in Stuttgart, Germany. He emigrated to the United States in 1938, graduated in 1943 from Stuyvesant.

Wikipedia- categories of Rolf Landauer

Categories: Stuyvesant High School alumni | 1927 births | 1999 deaths | If recipients | Fellows of the Institute of Electrical and Electronics Engineers
OmniFind: Query Syntax

- XML-Fragment or XPath Syntax
- Access to the KB: API or User-Interface
- Sample Query

```xml
@xmlf2::'
  <page category="scientist" />
  OR <page category="person" />
  + <sentence>
    <title> * "born in" * <link category="country">Germany</link>
  </sentence>
  + <sentence>
    <title> * "studied at" * <link category="University"/>
    * <link category="city">Karlsruhe</link>
    * "received" * <link category="Degree"/>
  </sentence>
'
Table of Content

- Motivation
- Architecture
- Annotation Engine
- User Interface
- Future Work