Use of multiple background ontologies in ontology matching

Zharko Aleksovski
Philips Research Eindhoven, Netherlands

Tenerife, Spain, 2008
Agenda

• **Intro: ontology matching using background knowledge**
• Case study
• Results, evaluation
• Conclusions
Introduction – ontology matching problem

- Ontology matching is central in Semantic Web
- Solutions are necessary in many applications
- Available automatic solutions:
 - Lexical techniques
 - Structural techniques
 - Instance based techniques
 - Use of background knowledge
Introduction – ontology matching problem

- Ontology matching using background knowledge
 - Step 1: Anchoring
 Connect the matching ontologies to the background knowledge
 - Step 2: Deriving indirect matches
 Find indirect matches using the anchors
Ontology matching using background knowledge

- Background knowledge ontology
- Anchoring
- Deriving relations
- Anchoring
- Source ontology
- Indirect match
- Target ontology
Ontology matching using background knowledge
Introduction – ontology matching problem

Nice idea, but what actually happens in practice?
Agenda

• Intro: ontology matching using background knowledge
• Case study
• Results, evaluation
• Conclusions
Case study

- Experiments to match two ontologies: NALT and Agrovoc (OAEI 2005 data)
- Direct matching as a base line
- Indirect matching through six background ontologies
- What is the behavior of matching with multiple background ontologies?
Case study: Background knowledge

<table>
<thead>
<tr>
<th>Background knowledge ontology</th>
<th>Type of ontology</th>
<th>Size in number of concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK₁: Economy</td>
<td>Different domain</td>
<td>323</td>
</tr>
<tr>
<td>BK₂: Mid-level</td>
<td>General knowledge</td>
<td>1773</td>
</tr>
<tr>
<td>BK₃: Sumo</td>
<td>General knowledge</td>
<td>576</td>
</tr>
<tr>
<td>BK₄: Tap</td>
<td>General knowledge</td>
<td>5488</td>
</tr>
<tr>
<td>BK₅: A.Com</td>
<td>Unknown origin</td>
<td>5624</td>
</tr>
<tr>
<td>BK₆: Surrey</td>
<td>Unknown origin</td>
<td>672</td>
</tr>
</tbody>
</table>
Case study: Experiments

• Experiments:
 – **Experiment 1: direct matching**
 • Step 1: Use labels of the matching ontologies
 • Step 2: Use the structure to find additional matches
 – **Experiments 2-7: indirect matching**
 • Step 1: Anchor using lexical method
 • Step 2: Derive indirect matches
 – **Matching result:** concept pairs connected related as
 • Equivalent \equiv
 • Broader-than \supseteq
 • Narrower-than \subseteq
Agenda

• Intro: ontology matching using background knowledge
• Case study
• Results, evaluation
• Conclusions
Results, evaluation

- Direct matching (Exp.1) – base line
 - 6,437 matches in total
 - Comparable with OAEI 2005 results
Results, evaluation

- Indirect matching (Exp.2-7)

<table>
<thead>
<tr>
<th>Background ontology</th>
<th>BK_i size</th>
<th>Indirect matches</th>
<th>Additional matches on top of direct matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK_1: Economy</td>
<td>323</td>
<td>259</td>
<td>85</td>
</tr>
<tr>
<td>BK_2: MidLevel</td>
<td>1773</td>
<td>200</td>
<td>81</td>
</tr>
<tr>
<td>BK_3: Sumo</td>
<td>576</td>
<td>115</td>
<td>57</td>
</tr>
<tr>
<td>BK_4: Tap</td>
<td>5488</td>
<td>1003</td>
<td>625</td>
</tr>
<tr>
<td>BK_5: ACom</td>
<td>5624</td>
<td>87</td>
<td>71</td>
</tr>
<tr>
<td>BK_6: Surrey</td>
<td>672</td>
<td>623</td>
<td>543</td>
</tr>
<tr>
<td>Cumulatively all BK_i</td>
<td>2183</td>
<td></td>
<td>1428</td>
</tr>
</tbody>
</table>
Results, evaluation

- Evaluation: direct matching
 - Random sample of 10%
 - Manual inspection of correctness
 - Document classification task
Results, evaluation

- Evaluation: indirect matching

<table>
<thead>
<tr>
<th>Matching experiment</th>
<th>Precision indir. matches</th>
<th>Precision addit. matches</th>
<th>ΔRecall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.2: BK₁: Economy</td>
<td>84.17%</td>
<td>51.76%</td>
<td>0.68%</td>
</tr>
<tr>
<td>Exp.3: BK₂: Mid-level</td>
<td>97.00%</td>
<td>92.59%</td>
<td>1.17%</td>
</tr>
<tr>
<td>Exp.4: BK₃: Sumo</td>
<td>76.52%</td>
<td>52.63%</td>
<td>0.47%</td>
</tr>
<tr>
<td>Exp.5: BK₄: Tap</td>
<td>57.23%</td>
<td>31.36%</td>
<td>3.04%</td>
</tr>
<tr>
<td>Exp.6: BK₅: A.Com</td>
<td>36.78%</td>
<td>22.54%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Exp.7: BK₆: Surrey</td>
<td>35.63%</td>
<td>26.15%</td>
<td>2.21%</td>
</tr>
<tr>
<td>Cumulatively BK₁-BK₆</td>
<td>57.63%</td>
<td>35.22%</td>
<td>7.81%</td>
</tr>
</tbody>
</table>
Agenda

• Intro: ontology matching using background knowledge
• Case study
• Results, evaluation
• Conclusions
Conclusions

• What background knowledge we use is very important
• Recall increases monotonically - Multiple background ontologies can be used simultaneously
• Precision depends on the quality of background ontology
• Regardless of domain, expert-created background ontologies behave in similar way
Thank you for attention!

Any questions?