Using Prior Domain Knowledge to Build Robust HMM-Based Semantic Tagger Trained on Completely Unannotated Data

Kinfe Tadesse Mengistu, Mirko Hannemann, Tobias Baum and Andreas Wendemuth

Cognitive Systems Group, Otto-von-Guericke University, Magdeburg, Germany

09.07.2008
Introduction

- Spoken Language Understanding (SLU) unit in a dialog system aims at getting what is meant from what is said.
- Semantic tagging is an approach towards SLU where an utterance is conceived as a hidden sequence of semantic concepts expressed in words or phrases.
- The required model is one that determines the most likely sequence of the hidden semantic concepts that could have generated the observed sequence of words.
- Hidden Markov Model (HMM) is a natural choice for estimating the probability of hidden events from observed ones.
In this paper, we describe:

- a robust HMM-based semantic tagger trained on completely unannotated data,
- the use of prior domain knowledge:
 - to model the ontology of a given application domain: identify the activities, entities, attributes and relations within a given domain of discourse.
 - to group semantically related concepts together so that adjacent, strongly related concepts are well-coupled and longer context can be captured.
 - to define well-informed initial HMM topology and determine good initial model parameter values so that E-M algorithm can be effectively used.
- a method to keep the amount of human intervention required to the minimum.
Architecture of the Dialog System

Figure 1: High-level Block Diagram of the Dialog System
Two application domains are considered - namely:

- airline travel planning (in English), and
- train inquiries (in German)

Each application domain is modeled in two stages:

- a detailed list of semantic concepts in each application domain is identified using prior domain knowledge and training example sentences,

- groups of attributes (sub-concepts) that describe a single semantic concept are grouped together to form cohesive units referred to as super concepts.

For instance, DATE, TIME, and multi-word city and train station names could be modeled as super-concepts (sub-networks).
The rationale for grouping of related concepts into super-concepts is threefold:

- Improve the predictive power of the model since adjacent related concepts are well-coupled,
- Produce semantically rich outputs (a phrase is more meaningful than a single word),
- Improve ambiguity resolution power.
Modeling Approach: Super-Concepts

CITY (CITY_P1, CITY_P2, CITY_P3, SPELT_CITY),
DATE (DAY_OF_MONTH, DAY_OF_WEEK, MONTH, YEAR),
TIME (MINUTES, HOUR_OF_DAY, AMPM),
AIRLINE (AIRLINE_QUALIFIER, AIRLINE_NAME),
AIRPORT (AIRPORT_NAME, AIRPORT_TYPE, AIRPORT_QUALIFIER,
 SPELT_AIRPORT),
CAR_INFO (RENTAL_COMPANY, CAR, CAR_TYPE),
FLIGHT_INFO (FLIGHT_CLASS, FLIGHT_NUMBER, FLIGHT_TYPE,
 FLIGHT_QUALIFIER),
HOTEL_INFO (HOTEL_TYPE, HOTEL_QUALIFIER, LOCATION),
USER (ID, ID_NUMBER, NAME_OF_USER),
PRICE (FARE, AMOUNT_OF_MONEY, FARE_CLASS),

Figure 2: Example Super-concepts

Other single state concepts include COUNTRY, STATE, TO, FROM, AT, IN, ON, ARRIVAL, DEPARTURE, RETURN, DUMMY, YES, NO, etc.
To provide easy tuning of model parameters and to keep the level of human effort to the minimum, we implemented a model compiler that generates the initial model parameter values given input of the following form:
Modeling Approach: Model Definition

```
INIT
  -> except{FINAL}
  ...
CITY
{
  CITY
    -> except{~CITY}
  CITY_P1
    -> all high{CITY_P2} low{~CITY}
    "city_p1.txt"
  CITY_P2
    -> all high{CITY_P3, ~CITY} low{CITY_P1}
    "city_p2.txt"
  CITY_P3
    -> all high{CITY_P3, ~CITY}
    "city_p3.txt"
  SPELT_CITY
    -> all high{SPELT_CITY}
    "spelt_city.txt"
    ~CITY
    -> none
}
-> except{INIT} high{AIRPORT, STATE, COUNTRY}
DATE
{
  DATE
    -> except{~DATE}
  MONTH
    -> all high{DAY_OF_MONTH}
    "month.txt"
  DAY_OF_MONTH
    ...
    ~DATE
    -> none
}
-> except{INIT}
...
TO
-> except{INIT} high{CITY, AIRPORT}
"to.txt"
...
FINAL
-> none
```
Modeling Approach: Structure of the HMM
Table 1: Description of data for airline travel planning domain

<table>
<thead>
<tr>
<th>Set</th>
<th>No. of Utterances</th>
<th>No. of Unique Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAINING</td>
<td>8000</td>
<td>915</td>
</tr>
<tr>
<td>TEST</td>
<td>1000</td>
<td>581</td>
</tr>
</tbody>
</table>

Average number of words per utterance is 4.04 in the training-set and 8.98 in the test-set.

Table 2: Description of data for train inquiries domain

<table>
<thead>
<tr>
<th>Set</th>
<th>No. of Utterances</th>
<th>No. of Unique Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAINING</td>
<td>8000</td>
<td>921</td>
</tr>
<tr>
<td>TEST</td>
<td>1000</td>
<td>830</td>
</tr>
</tbody>
</table>

The average number of words per utterance is 12.26 in the training set and 11.76 in the test-set.
Experiments and Results

The performance of the models is evaluated in terms of:

- **Precision (P):** the number of correctly labeled concept chunks out of all tagged concepts.
- **Recall (R):** the number of correctly identified concepts from the ground truth annotation.
- **F-Measure:** the harmonic mean of precision and recall.

Baseline: If we assign to each token one of its possible tags randomly, the average performance is 56.4% in F-measure.
Experiments and Results

Flat: refers to a flat, ergodic HMM model, before grouping of related concepts where each state is one of the sub-concepts.

Grouped: refers to a model after grouping of related sub-concepts.

<table>
<thead>
<tr>
<th>Model</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>F-Measure(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>57.32</td>
<td>66.42</td>
<td>61.53</td>
</tr>
<tr>
<td>Grouped</td>
<td>85.67</td>
<td>77.98</td>
<td>81.64</td>
</tr>
</tbody>
</table>

Tuning: refers to biasing the initial transition probabilities based on prior domain knowledge and training examples.

<table>
<thead>
<tr>
<th>Data</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>F-Measure(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicator</td>
<td>96.15</td>
<td>84.46</td>
<td>89.92</td>
</tr>
<tr>
<td>ERBA</td>
<td>94.90</td>
<td>94.19</td>
<td>94.54</td>
</tr>
</tbody>
</table>
Experiments and Results

Training: a few iterations of E-M training algorithm.

Table 5: Performance of the models after training

<table>
<thead>
<tr>
<th>Data</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>F-Measure(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATOR</td>
<td>98.75</td>
<td>84.58</td>
<td>91.12</td>
</tr>
<tr>
<td>ERBA</td>
<td>96.94</td>
<td>96.19</td>
<td>96.56</td>
</tr>
</tbody>
</table>

Smoothing: to account for unseen transitions and out-of-vocabulary words.

Table 6: Performance of the models after smoothing

<table>
<thead>
<tr>
<th>Data</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>F-Measure(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATOR</td>
<td>96.91</td>
<td>97.12</td>
<td>97.01</td>
</tr>
<tr>
<td>ERBA</td>
<td>96.82</td>
<td>97.41</td>
<td>97.11</td>
</tr>
</tbody>
</table>
Table 7: Example Tagged Output

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Semantic Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I would like to fly)</td>
<td>DUMMY</td>
</tr>
<tr>
<td>(to)</td>
<td>TO</td>
</tr>
<tr>
<td>(Los Angeles)</td>
<td>CITY</td>
</tr>
<tr>
<td>(from)</td>
<td>FROM</td>
</tr>
<tr>
<td>(Dallas Fort Worth international airport)</td>
<td>AIRPORT</td>
</tr>
<tr>
<td>(on)</td>
<td>ON</td>
</tr>
<tr>
<td>(September thirtieth)</td>
<td>DATE</td>
</tr>
<tr>
<td>(in the morning)</td>
<td>PERIOD_OF_DAY</td>
</tr>
</tbody>
</table>
Summary

We described an HMM-based semantic tagging model with the following features. The model:

- is trained on completely unannotated data with the help of a priori domain knowledge,
- offers high ambiguity resolution power,
- outputs semantically rich information,
- requires relatively low human effort,
- correctly labels a significant amount of OOV words,
- gives very high performance; i.e., over 97% (in F-measure) in two different application domains and languages on two 1000-utterance test-sets.