
Learning rules with Adaptor Grammars
(workshop on Prior Knowledge)

Mark Johnson

based on joint work
with Sharon Goldwater and Tom Griffiths

July, 2008

1 / 58

Ideas behind talk

• Most successful statistical learning methods are parametric

◮ PCFG learning: given data and rules, learn rule
probabilities

• Non-parametric learning can potentially learn parameters
(rules) as well as their values

• Adaptor grammars:

◮ are a framework for specifying hierarchical nonparametric
Bayesian models

◮ are approximated by PCFGs, where number and shape of
rules depends on data

• Prior knowledge (shapes of possible rules) plays a crucial role

◮ in word segmentation, need to balance structure above and
below the word

2 / 58

Questions this work tries to address

• Can non-parametric hierarchical Bayesian models help us
understand language acquisition?

◮ Adaptor grammars are a framework for easily constructing
these models

• How useful are various potential information sources for
language acquisition? (here, word segmentation)

◮ Changing grammar changes the generalizations it can learn
◮ How much do we have to “build in”?

• Are the information sources most useful for English also useful
for other languages?

• Are there synergies in learning? Is it better to learn several
things at once?

3 / 58

Why not study syntax?

• Bayesian PCFG estimation works well on toy examples
but simple models (at least) don’t work well on real data

• Lower level phenomena (word segmentation, phonology,
morphology) may be:

◮ less dependent on meaning,
◮ learnt earlier by children, and
◮ easier to learn than syntax

yet still exhibit structural complexities

⇒ Unsupervised morphological analysis:
Example: e△x△p△a△n△dNe△d

⇒ Word segmentation: segment broad phonemic utterances
Example: y△uNw△a△n△tNt△uNs△iND△6Nb△U△k

4 / 58

Outline

From PCFGs to Adaptor Grammars

Adaptor grammars for English word segmentation

Bayesian inference for Adaptor Grammars

Conclusion

5 / 58

Probabilistic context-free grammars
• Rules in Context-Free Grammars (CFGs) expand nonterminals

into sequences of terminals and nonterminals
• A Probabilistic CFG (PCFG) associates each nonterminal with

a multinomial distribution over the rules that expand it
• Probability of a tree is the product of the probabilities of the

rules used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Sam 0.75 NP → Sandy 0.25
VP → barks 0.6 VP → snores 0.4

P

Sam

NP

S

VP

barks

= 0.45 P

Sandy

NP

S

VP

snores

= 0.1

6 / 58

A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent
any segmentation of words into
stems and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

7 / 58

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
◮ not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

8 / 58

Nonparametric extensions of PCFGs

• Dirichlet Processes are a natural nonparametric extension of
Dirichlet-multinomials that underlie Bayesian PCFGs

• Two obvious nonparametric extensions of PCFGs:

◮ let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG

◮ let the number of rules grow unboundedly

– “new” rules are compositions of several rules from
original grammar

– equivalent to caching tree fragments
⇒ adaptor grammars

• No reason both can’t be done together . . .

9 / 58

Adaptor grammars: informal description

• An adaptor grammar has a set of CFG rules

• These determine the possible structures as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and
recursively expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:

◮ by picking a rule and recursively expanding its children, or
◮ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Each adapted subtree behaves like a new rule added to the
grammar

• The CFG rules of the adapted nonterminals determine the base
distribution over these trees

10 / 58

Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

◮ it learns from the trees it generates
◮ if an adapted subtree has been used frequently in the past,

it’s more likely to be used again

• (but the sequence of trees is exchangable)

• An unadapted nonterminal A expands using A → β with
probability θA→β

• An adapted nonterminal A expands:

◮ to a subtree τ rooted in A with probability proportional to
the number of times τ was previously generated

◮ using A → β with probability proportional to αAθA→β

11 / 58

An Adaptor Grammar for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Word, Stem and Suffix are
adapted

⇒ learns probabilities of whole
Stem and Suffix and Word
subtrees

12 / 58

Morphology adaptor grammar (0)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Stem restaurant

Stem → Phoneme⋆

Suffix restaurant

Suffix → Phoneme+

13 / 58

Morphology adaptor grammar (1a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → Phoneme⋆

Suffix restaurant

Suffix → Phoneme+

14 / 58

Morphology adaptor grammar (1b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → Phoneme⋆

•

Suffix restaurant

Suffix → Phoneme+

•

15 / 58

Morphology adaptor grammar (1c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

16 / 58

Morphology adaptor grammar (1d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

17 / 58

Morphology adaptor grammar (2a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

•

18 / 58

Morphology adaptor grammar (2b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

•

•

•

19 / 58

Morphology adaptor grammar (2c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

•

•

•

20 / 58

Morphology adaptor grammar (2d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

•

•

•

21 / 58

Morphology adaptor grammar (3)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

•

•

•

•

22 / 58

Morphology adaptor grammar (4a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

•

•

•

•

•

23 / 58

Morphology adaptor grammar (4b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

•

•

•

•

••

•

•

24 / 58

Morphology adaptor grammar (4c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

Suffix

#

•

•

•

•

••

•

•

25 / 58

Morphology adaptor grammar (4d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

••

•

•

26 / 58

Morphology as a Hierarchical Dirichlet Process

• Expand each Word into:

◮ a previously generated subtree with prob. ∝ number of
times subtree was generated before

◮ a Stem and Suffix with prob. ∝ αWordP(Stem)P(Suffix)

• Expand Stem into:

◮ a sequence of Phoneme with prob. ∝ number of times
Stem expanded to this sequence before

◮ a sequence of Phoneme generated by PCFG rules with
prob. ∝ αStemP(Phonemes)

• Suffix expands in same way as Stem

• This is a Hierarchical Dirichlet Process where Stem and Suffix
distributions define the base distribution for Word DP

27 / 58

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed
of a Stem and a Suffix, which are
composed of Chars

• To generate next Word in an
adaptor grammar

◮ reuse an old Word, or
◮ generate a fresh one from base

distribution, i.e., generate a
Stem and a Suffix

• To generate next Stem

◮ reuse an old Stem, or
◮ generate random Char sequence

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

28 / 58

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of a subtree τ is proportional to:

◮ the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

◮ plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can be more probable than their
parts

• PCFG rule probabilities estimated from table labels
⇒ learns from types, not tokens
⇒ dampens frequency variation

29 / 58

Outline

From PCFGs to Adaptor Grammars

Adaptor grammars for English word segmentation

Bayesian inference for Adaptor Grammars

Conclusion

30 / 58

Unigram adaptor grammar for English

• Adaptor grammar (adapted nonterminals highlighted):

Sentence → Words
Words → Word
Words → Word Words
Word → Phonemes
Phonemes → Phoneme
Phonemes → Phoneme Phonemes

or in abbreviated format:

Sentence → Word+

Word → Phoneme+

• Sample parse (only showing root and adapted nonterminals):

Sentence

Word

y u w a n t

Word

t u

Word

s i D 6

Word

b U k

• Word segmentation f-score = 0.55 (same as Goldwater et al)

31 / 58

Unigram word grammar as a Dirichlet Process

• Unigram word grammar implements unigram word
segmentation model of Goldwater et al (2006)

• Generative process:

◮ expand Sentence into a sequence of Words using PCFG
rules

◮ expand each Word into:

– a sequence of Phonemes with prob. ∝ number of times
Word expanded to this sequence before

– a sequence of phonemes generated by PCFG rules
with prob. ∝ αWord

• This is a Dirichlet Process where the PCFG rules expanding
Word define the base distribution

32 / 58

Unigram model often finds collocations

• Unigram word segmentation model assumes each word is
generated independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by
analyzing collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

33 / 58

Unigram word segmentation grammar learnt
• Based on the base grammar rules

Words → Word+

Word → Phoneme+

the adapted grammar contains 1,712 rules such as:

15758 Words → Word Words
9791 Words → Word
1660 Word → Phoneme+

402 Word → y u
137 Word → I n
111 Word → w I T
100 Word → D 6 d O g i
45 Word → I n D 6
20 Word → I n D 6 h Q s

34 / 58

Unigram morphology adaptor grammar
• Adaptor grammar memorizes Word, Stem and Suffix:

Sentence → Word+

Word → Stem (Suffix)
Stem → Phoneme+

Suffix → Phoneme+

• Sample parse:
Sentence

Word

Stem

w a n

Suffix

6

Word

Stem

k l o z

Suffix

I t

Sentence

Word

Stem

y u

Suffix

h & v

Word

Stem

t u

Word

Stem

t E l

Suffix

m i

• Combines Goldwater’s morphology and unigram model
• Word segmentation f-score = 0.46 (worse than unigram)
• Tends to misanalyse words as Stems or Suffixes

35 / 58

Simultaneously learning word segmentation and

syllable structure

Sentence → Word+

Word → Syllable+

Syllable → (Onset) Rhyme
Onset → Consonant+

Rhyme → Nucleus (Coda)
Nucleus → Vowel+

Coda → Consonant+

• Word, Onset, Nucleus and Coda are all adapted
• Seems to do a fairly good job of identifying syllable boundaries
• Does a poor job of word segmentation (32% token f-score)

Words are undersegmented, just as in unigram model
• Segmentation gets better if we distinguish word-initial Onsets

and word-final Codas (46% f-score)
36 / 58

Simultaneous word segmentation and syllable

structure

Sentence

Word

Syllable

Onset

y

Rhyme

Nucleus

u

Syllable

Onset

w

Rhyme

Nucleus

a

Coda

n t

Syllable

Onset

t

Rhyme

Nucleus

u

Word

Syllable

Onset

s

Rhyme

Nucleus

i

Word

Syllable

Onset

D

Rhyme

Nucleus

6

Syllable

Onset

b

Rhyme

Nucleus

U

Coda

k

37 / 58

Modeling collocations improves segmentation

Sentence → Colloc+

Colloc → Word+

Word → Phoneme⋆

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words
• Both Words and Collocs are adapted (learnt)
• Significantly improves word segmentation accuracy over

unigram model (75% f-score; ≈ Goldwater’s bigram model)
• Two levels of Collocations improves slightly (76%)

38 / 58

Syllables + Collocations + Word segmentation
Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• With no supra-word generalizations, f-score = 68%
• With 2 Collocation levels, f-score = 84%
• Without distinguishing initial/final clusters, f-score = 82%

39 / 58

Syllables + 2-level Collocations + Word

segmentation

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

40 / 58

Word segmentation results summary
Collocation levels above the word
none 1 level 2 levels 3 levels

none 0.55 0.73 0.75 0.74

B
el

o
w

th
e

w
o
rd morphemes 0.35 0.55 0.79 0.78

syllables 0.32 0.69 0.82 0.81
syllables IF 0.46 0.68 0.84 0.84

• We can learn collocations and syllable structure together with
word segmentation, even though we don’t know where the word
boundaries are

• Learning these together improves word segmentation accuracy
◮ are there other examples of synergistic interaction in

language learning?
• Appropriately balancing structure above and below the Word

seems to be crucial
◮ even though all of the grammars are non-parametric

41 / 58

Outline

From PCFGs to Adaptor Grammars

Adaptor grammars for English word segmentation

Bayesian inference for Adaptor Grammars

Conclusion

42 / 58

Estimating adaptor grammars
• Need to estimate:

◮ cached subtrees τ for adapted nonterminals
◮ (optional) DP parameters α for adapted nonterminals
◮ (optional) probabilities θ of base grammar rules

• Component-wise Metropolis-within-Gibbs sampler
◮ components are parse tree Ti for each string Wi

◮ sample Ti from P(T |Wi, T−i, α, θ) for each sentence Wi in
turn

• Sampling directly from conditional distribution of parses seems
intractable

◮ construct PCFG proposal grammar G′(T−i) on the fly
◮ each table label τ corresponds to a production in PCFG

approximation
◮ Use accept/reject to convert samples from PCFG approx

to samples from adaptor grammar
43 / 58

Metropolis-with-Gibbs sampler

• Collapsed Gibbs sampler: resample parse Ti given Wi and T−i

• Table counts change within a parse tree

⇒ grammar is not context-free
⇒ breaks standard dynamic programming
⇒ Metropolis accept/reject for each Gibbs sample

• PCFG can express probability of selecting a table given T−i

◮ ignores changing table counts within single parse

• Rules of PCFG proposal grammar G′ consist of:

◮ rules A → β from base PCFG: θ′A→β ∝ αAθA→β

◮ A rule A → Yield(τ) for each table τ in A’s restaurant:
θ′

A→Yield(τ)
∝ nτ , the number of customers at table τ

• Parses of G′ can be mapped back to adaptor grammar parses

44 / 58

Bayesian priors on adaptor grammar parameters

• Parameters of adaptor grammars:

◮ probabilities θA→β of base grammar rules A → β
◮ concentration parameters αA of adapted nonterminals A

• Put Bayesian priors on these parameters

◮ (Uniform) Dirichlet prior on base grammar rule
probabilities θ

◮ Vague Gamma prior on concentration parameter on αA

• We also use a generalization of CRPs called “Pitman-Yor
processes”, and put a uniform Dirichlet prior on its a parameter

• We use a Metropolis-Hastings sampler for a and b parameters

◮ a is sampled from sequence of increasingly narrow
Dirichlets

◮ b is sampled from sequence of increasingly narrow Gammas

• Seems to improve performance with complicated grammars

45 / 58

Random initialization is better than incremental

initialization
• Incremental initialization: assign parse for Wi based on T1,i−1

• Random initialization: initially assign parses Ti randomly
• Incremental initialization seems to get stuck in local optima

incremental initialization
random initialization

Iteration

-
lo

g
p
o
st

er
io

r
p
ro

b
a
b
il
it
y

200150100500

240000

235000

230000

225000

220000

215000

210000

205000

46 / 58

Table label resampling improves mobility
• Gibbs algorithm: resample Ti given Wi and T−i

• Table label resampling resamples the labels on each table
◮ can change parses for many sentences at once

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → Phoneme⋆

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → Phoneme+

Suffix

Char

s

#

Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

••

•

•

47 / 58

Table label resampling with Colloc grammar

resampling to iteration 100
resampling

no resampling

Iteration

-
lo

g
p
o
st

er
io

r
p
ro

b
a
b
il
it
y

10008006004002000

220000

215000

210000

205000

200000

195000

190000

185000

48 / 58

Segmentation accuracy with Colloc grammar

sequential init, resampling to iteration 100
sequential init, no resampling

sequential init, resampling
random init, resampling to iteration 100

random init, no resampling
random init, resampling

Iteration

W
o
rd

to
k
en

f-
sc

o
re

200150100500

1.2

1

0.8

0.6

0.4

0.2

49 / 58

Outline

From PCFGs to Adaptor Grammars

Adaptor grammars for English word segmentation

Bayesian inference for Adaptor Grammars

Conclusion

50 / 58

Summary and future work

• Adaptor grammars can describe a variety of linguistic
phenomena

• Grammars ⇒ easy to design and compose

• Adaptor grammars “adapt” their distribution to the strings
they have generated

◮ learn probabilities of subtrees of adapted nonterminals
⇒ adaptor grammars non-parametric; the subtrees they cache

depends on trees they have generated
⇒ grammar determines the generalizations it learns

• Synergies in learning

◮ learning certain kinds of generalizations (Syllable,
Collocation) “explains away” data that would otherwise
interfere with learning other generalizations (Word)

51 / 58

Issues with adaptor grammars
• Recursion through adapted nonterminals seems problematic

◮ New tables are created as each node is encountered
top-down

◮ But the tree labeling the table is only known after the
whole subtree has been completely generated

◮ If adapted nonterminals are recursive, might pick a table
whose label we are currently constructing. What then?

• Extend adaptor grammars so adapted fragments can end at
nonterminals a la DOP (currently always go to terminals)

◮ Adding “exit probabilities” to each adapted nonterminal
◮ In some approaches, fragments can grow “above” existing

fragments, but can’t grow “below” (O’Donnell)

• Adaptor grammars conflate grammatical and Bayesian
hierarchies

◮ Might be useful to disentangle them with meta-grammars
52 / 58

Context-free grammars
A context-free grammar (CFG) consists of:

• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N ,
• a finite set R of rules A → β, where A ∈ N and β ∈ (N ∪ W)⋆

• a start symbol S ∈ N .
Each A ∈ N ∪ W generates a set TA of trees.
These are the smallest sets satisfying:

• If A ∈ W then TA = {A}.
• If A ∈ N then:

TA =
⋃

A→B1...Bn∈RA

TreeA(TB1 , . . . , TBn
)

where RA = {A → β : A → β ∈ R}, and

TreeA(TB1 , . . . , TBn
) =

{

�� PP

A

t1 tn. . .

:
ti ∈ TBi

,

i = 1, . . . , n

}

The set of trees generated by a CFG is TS. 53 / 58

Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector
θ, where:

• θA→β is the probability of expanding the nonterminal A using
the production A → β.

It defines distributions GA over trees TA for A ∈ N ∪ W :

GA =

δA if A ∈ W
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1 , . . . , GBn

) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . , Gn)

(

�� PP

A

t1 tn. . .

)

=
n
∏

i=1

Gi(ti).

TDA(G1, . . . , Gn) is a distribution over TA where each subtree ti is
generated independently from Gi.

54 / 58

DP adaptor grammars

An adaptor grammar (G, θ, α) is a PCFG (G, θ) together with a
parameter vector α where for each A ∈ N , αA is the parameter of
the Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1 , . . . , GBn

)

The grammar generates the distribution GS.
One Dirichlet Process for each adapted non-terminal A (i.e.,
αA > 0).

55 / 58

Recursion in adaptor grammars

• The probability of joint distributions (G, H) is defined by:

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1 , . . . , GBn

)

• This holds even if adaptor grammar is recursive

• Question: when does this define a distribution over (G, H)?

56 / 58

Adaptive fragment grammars
• Disentangle syntactic and Bayesian hierarchy

◮ Adaptive metagrammar generates fragment distributions
◮ which plug together as in tree substitution grammar

• Tree fragment sets PA, A ∈ N are smallest sets satisfying:

PA =
⋃

A→B1...Bn∈RA

TreeA({B1} ∪ PB1 , . . . , {Bn} ∪ PBn
)

• Grammar’s distributions GA over TA defined using fragment
distributions FA over PA (generalized PCFG rules)

GA =
∑

�� PP

A

B1 Bn. . .

∈PA

FA(�� PP

A

B1 Bn. . .

) TD
�� PP

A

B1 Bn. . .

(GB1 , . . . , GBn
)

• A fragment grammar generates the distribution GS

57 / 58

Adaptive fragment distributions

• HA is a PCFG distribution over PA

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(η δB1 + (1 − η)HB1 , . . .)

where η is the fragment exit probability

• Obtain FA by adapting the HA distribution

FA ∼ DP(αA, HA)

• This construction can be iterated, i.e., replace θ with another
fragment distribution

• Question: if we iterate this, when does the fixed point exist, and
what is it?

58 / 58

	From PCFGs to Adaptor Grammars
	Adaptor grammars for English word segmentation
	Bayesian inference for Adaptor Grammars
	Conclusion
	Extensions and elaborations

