Boosting with Incomplete Information

Gholamreza Haffari1 Yang Wang1 Shaojun Wang2
Greg Mori1 Feng Jiao3

1Simon Fraser University, Canada
2Wright State University, USA
3Yahoo! Inc., USA

The 25th International Conference on Machine Learning
Helsinki, Finland, 2008
Supervised Classification

Given data set $D = \{x_i, y_i\}$, x_i is the input vector, y_i is the class label, learn a mapping function $F: \mathcal{X} \rightarrow \mathcal{Y}$

Classification with Incomplete Information

- Given two kinds of data sets $D_1 = \{x_i, y_i\}$, $D_2 = \{x_j, h_j, y_j\}$, learn a mapping function $F: \mathcal{X} \times \mathcal{H} \rightarrow \mathcal{Y}$
- This two data sets assumption is general and can be applied to many problems.
Motivation

Hassani, Wang, Wang, Mori, Jiao

Boosting with Incomplete Information
Motivation

Car

y

Car

y

h

x

x
Motivation

\[x \]

\[Y \]

\[\text{You} \]
\[\text{went} \]
\[\text{home} \]
\[\cdot \]

\[\text{rafti} \]
\[\text{khaane} \]
\[\cdot \]
Motivation

\[x \]
- You
- went
- home
-

\[y \]
- rafti
- khaane
- .

\[x \ h \ y \]
- I
- will
- go
- to
- the
- university
- .

- man
- be
- daneshgah
- khaham
- raft
- .
Previous Work

- EM algorithm for generative models
- Max margin classification (Bi & Zhang, 2004; Chechik et al., 2007)
- Hidden conditional random fields (Koo & Collins, 2005; Quattoni et al., 2005)
- Second order cone programming (Shivaswamy et al., 2006)
Review of boosting

Basics

- Feature (weak learner, sufficient statistics): \(f_k : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \)
- Final classifier: \(y^* = \arg \max_y \left(\sum_k \lambda_k f_k(x, y) \right) \)

Learning parameters \(\lambda_k \)

- Unnormalized model
 - Minimize \(\sum_{x_i} \sum_y q_\lambda(y|x_i) \)
 - where \(q_\lambda(y|x) := \exp \sum_k \lambda_k \left[f_k(x, y) - f_k(x, \tilde{y}_x) \right] \)

- Normalized model
 - Maximize \(\sum_{x_i} \log p_\lambda(\tilde{y}_{x_i} | x_i) \)
 - where \(p_\lambda(y|x) := q_\lambda(y|x) / Z_\lambda(x) \)

(Lebanon & Lafferty, 2002)
Primal/Dual Problem

Definition

- (extended) KL divergence:
 \[D(p, q) := \sum_x \tilde{p}(x) \sum_y \left(p(y|x) \log \frac{p(y|x)}{q(y|x)} - p(y|x) + q(y|x) \right) \]

- feasible set:
 \[\mathcal{F}(\tilde{p}, f) = \left\{ p \mid \sum_x \tilde{p}(x) \sum_y p(y|x)(f_j(x, y) - E_{\tilde{p}}[f_j|x]) = 0, \forall j \right\} \]

Primal problems

(P1) min. \(D(p, q_0) \)
\[\text{s.t.} \quad p \in \mathcal{F}(\tilde{p}, f) \]

(P2) min. \(D(p, q_0) \)
\[\text{s.t.} \quad p \in \mathcal{F}(\tilde{p}, f) \]
\[\sum_y p(y|x) = 1 \quad \forall x \]

(Lebanon & Lafferty, 2002)
Problem Statement

- Data sets: $\mathcal{D}_1 = \{(x_i, y_i)\}$, $\mathcal{D}_2 = \{(x_j, h_j, y_j)\}$, $|\mathcal{D}_1| >>> |\mathcal{D}_2|$ in general
- Features:

 $\mathcal{F}_1 = \{f_k(x, y)\}$

 $\mathcal{F}_2 = \{f_k(x, h, y)\}$

- Goal: how to learn a classifier using $\mathcal{D}_1 \cup \mathcal{D}_2$ and $\mathcal{F}_1 \cup \mathcal{F}_2$?
Boosting with Hidden Variables

Normalized model

- Model: \(p_\lambda(y|x, h) \propto e^{\lambda^T_1 \cdot [f_1(x,y) - f_1(x,\tilde{y}_x)] + \lambda^T_2 \cdot [f_2(x,h,y) - f_2(x,h,\tilde{y}_x)]} \)

- Objective: maximize the log-likelihood

\[
\mathcal{L}(\lambda) := \sum_i \log p_\lambda(y_i|x_i) + \gamma \sum_j \log p_\lambda(y_j|x_j, h_j)
\]

Unnormalized model

- Model: \(q_\lambda(y|x, h) := e^{\lambda^T_1 \cdot [f_1(x,y) - f_1(x,\tilde{y}_x)] + \lambda^T_2 \cdot [f_2(x,h,y) - f_2(x,h,\tilde{y}_x)]} \)

- Objective: minimize the exponential loss

\[
\mathcal{E}(\lambda) := \sum_i \sum_h q_0(h|x) \sum_y q_\lambda(y|x_i, h) + \gamma \sum_j \sum_y q_\lambda(y|x_j, h_j)
\]
Primal/Dual Programs

Definitions

- extended KL-divergence

\[
KL(p||r) =
\sum_{x,h} \tilde{p}(x)q_0(h|x) \sum_y p(y|h,x) \left[\log \frac{p(y|x,h)}{r(x,h,y)} - 1 \right] + r(x, h, y)
\]

- feasible set \(S(\tilde{p}, q_0, F) = \{ p \in \mathcal{M} \mid \sum_x \tilde{p}(x) \mathbb{E}_{q_0(h|x)p(y|x,h)} \left[f - \mathbb{E}_{\tilde{p}(y|x)}[f] \right] = 0, \forall f \in F \} \)

Primal problems

(P1) min. \(KL(p||r) \) \[\text{s.t.} \quad p \in S\]

(P2) min. \(KL(p||r) \) \[\text{s.t.} \quad p \in S, \quad \sum_y p(y|x,h) = 1 \quad \forall x, h\]
Learning and Inference

Learning
- Construct auxiliary function to bound the change of $\mathcal{E}(\lambda + \Delta \lambda) - \mathcal{E}(\lambda)$ or $\mathcal{L}(\lambda) - \mathcal{L}(\lambda + \Delta \lambda)$
- Both parallel and sequential update rules can be derived

Inference
- If h is observed on test data, $y^* = \arg\max p(y|h, x)$
- If h is unobserved on test data, $y^* = \arg\max p(y|x)$. This requires summing over h.
Experiments: Visual Object Recognition

airplane

car

face

motorbike
Experiments: Visual Object Recognition

- 1000 training/testing images, 4 categories
- 30% fully observed training images
- Baselines algorithms

BL1

\[\mathcal{D}_1 \begin{bmatrix} x_i, & y_i \end{bmatrix} \]

\[\mathcal{D}_2 \begin{bmatrix} x_j, & h_j, & y_j \end{bmatrix} \]
Experiments: Visual Object Recognition

- 1000 training/testing images, 4 categories
- 30% fully observed training images
- Baselines algorithms

\[D_1 \] \[x_i, y_i \] \[D_2 \] \[x_j, h_j, y_j \]

\[D_1 \] \[x_i, y_i \]

\[f_1 \] \[f_2 \]
Experiments: Visual Object Recognition

- 1000 training/testing images, 4 categories
- 30% fully observed training images
- Baselines algorithms

\[
\begin{align*}
\mathcal{D}_1 & \quad x_i, \ y_i \\
\mathcal{D}_2 & \quad x_j, h_j, y_j
\end{align*}
\]

Baselines algorithms:

- BL1
- BL2
- BL3
Experiments: Visual Object Recognition
Experiments: Visual Object Recognition
Experiments: Visual Object Recognition

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>Log-Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>97.22%</td>
<td>-0.0916</td>
</tr>
<tr>
<td>BL1</td>
<td>89.26%</td>
<td>-1.1417</td>
</tr>
<tr>
<td>BL2</td>
<td>88.01%</td>
<td>-0.5698</td>
</tr>
<tr>
<td>BL3</td>
<td>90.43%</td>
<td>-0.4375</td>
</tr>
</tbody>
</table>

Normalized Model

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>Log of Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>94.83%</td>
<td>-0.7412</td>
</tr>
<tr>
<td>BL1</td>
<td>82.57%</td>
<td>-1.1231</td>
</tr>
<tr>
<td>BL2</td>
<td>89.86%</td>
<td>-0.7977</td>
</tr>
<tr>
<td>BL3</td>
<td>87.64%</td>
<td>-0.8068</td>
</tr>
</tbody>
</table>

Unnormalized Model
Experiments: Named Entity Recognition

- CoNLL03 shared task: 5000 fully observed, 6000 partially observed, 1000 testing
- Features:
 - Lexical: word forms and their positions in the window
 - Syntactic: part-of-speech tags (if available)
 - Orthographic: capitalized, include digits, ...
 - Affixes: suffixes and prefixes
 - Left predict: predicted labels for the two previous words
Experiments: Named Entity Recognition

h is unobserved on test data

<table>
<thead>
<tr>
<th></th>
<th>f-measure</th>
<th>log-likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>49.45%</td>
<td>-0.5784</td>
</tr>
<tr>
<td>BL1</td>
<td>46.63%</td>
<td>-0.5932</td>
</tr>
<tr>
<td>BL2</td>
<td>48.10%</td>
<td>-0.5803</td>
</tr>
<tr>
<td>BL3</td>
<td>47.80%</td>
<td>-0.5880</td>
</tr>
</tbody>
</table>

normalized model

<table>
<thead>
<tr>
<th></th>
<th>f-measure</th>
<th>log of loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>49.04%</td>
<td>-2.6337</td>
</tr>
<tr>
<td>BL1</td>
<td>46.24%</td>
<td>-2.6458</td>
</tr>
<tr>
<td>BL2</td>
<td>47.58%</td>
<td>-2.6378</td>
</tr>
<tr>
<td>BL3</td>
<td>46.39%</td>
<td>-2.6434</td>
</tr>
</tbody>
</table>

unnormalized model
H is observed on test data

<table>
<thead>
<tr>
<th></th>
<th>f-measure</th>
<th>log-likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>59.60%</td>
<td>-0.5759</td>
</tr>
<tr>
<td>BL1</td>
<td>56.51%</td>
<td>-0.5916</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>f-measure</th>
<th>log of loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>60.17%</td>
<td>-0.2586</td>
</tr>
<tr>
<td>BL1</td>
<td>55.46%</td>
<td>-0.2655</td>
</tr>
</tbody>
</table>

normalized model

unnormalized model
Summary

Conclusion
A boosting approach that extends the traditional boosting framework by incorporating hidden variables, and achieves better results than baseline approaches.

Future work
- Extension to more complex dependent hidden variables (e.g., trees, graphs), variational methods (e.g., loopy BP) may be used
- Connection with confidence-rated AdaBoost (Schapire & Singer, 1999)