Training SVM with Indefinite Kernels

Jianhui Chen and Jieping Ye

Department of Computer Science and Engineering
Arizona State University
Support Vector Machines (SVMs) have been applied successfully in many domains.

Positive semidefinite (PSD) kernel matrix.

The PSD property of the kernel matrix ensures the existence of Reproducing Kernel Hilbert Space (RHKS) and leads to the following convex quadratic program (QP):

\[
\max_{\alpha} \quad \alpha^T e - \frac{1}{2} \alpha^T YKY \alpha \\
\text{subject to} \quad \alpha^T y = 0, \quad 0 \leq \alpha \leq C.
\]

The globally optimal solution can be obtained via the standard optimization techniques, such as primal-dual interior point methods.
Many applications may generate non-PSD similarity matrices (indefinite kernels):
 - Sequence similarity based on pairwise alignment.

Common approaches for fitting indefinite kernels into SVM:
 - Modify the SVM formulation
 - The existence of RHKS or general representer theorem. (Lin & Lin, 2003; Haasdonk, 2005; Ong et al., 2004)
 - Generate PSD kernels from indefinite kernels
 - Apply spectrum transformations (denoise, flip, diffusion, shift). (Wu et al., 2005)
 - Result in the loss of valuable information.
Main Contributions

- Propose a semi-infinite quadratically constrained linear program (SIQLP) formulation for training SVM with indefinite kernels, in which the indefinite kernel matrix is treated as a noisy observation of some unknown positive semidefinite one (proxy kernel).

- Propose an iterative algorithm for solving the SIQLP formulation, and conduct the convergence analysis.

- Propose to employ an additional pruning strategy to improve the efficiency of the proposed iterative algorithm.

- Analyze the close relationship between the proposed SIQLP formulation and multiple kernel learning.
Assume $K \in \mathbb{R}^{n \times n}$ is a valid kernel matrix. Let $y \in \mathbb{R}^n$ be the vector of class labels and $Y = \text{diag}(y)$. The dual formulation of 1-norm soft margin SVM classification is given by

$$\max_{\alpha} \quad \alpha^T e - \frac{1}{2} \alpha^T YKY \alpha$$

subject to $\alpha^T y = 0$, $0 \leq \alpha \leq C$. \hfill (2)

For a given indefinite kernel matrix K_0, we consider a regularized SVM formulation, in which the indefinite kernel is treated as a noisy observation of some unknown PSD kernel (proxy kernel) (Luss and d'Aspremont, 2007).

$$\max_{\alpha} \min_K \quad \alpha^T e - \frac{1}{2} \alpha^T YKY \alpha + \rho \|K - K_0\|^2_F$$

subject to $\alpha^T y = 0$, $0 \leq \alpha \leq C$, $K \succeq 0$. \hfill (3)
Problem Formulation - II

\[
\max_{\alpha} \min_K \alpha^T e - \frac{1}{2} \alpha^T YKY \alpha + \rho \| K - K_0 \|_F^2
\]

subject to \(\alpha^T y = 0, \ 0 \leq \alpha \leq C, \ K \succeq 0 \). \hspace{1cm} (4)

- Denote the objective function in Eq. (4) as

\[
S(\alpha, K) = \alpha^T e - \frac{1}{2} \alpha^T YKY \alpha + \rho \| K - K_0 \|_F^2.
\] \hspace{1cm} (5)

- Reformulate Eq. (3) as a semi-infinite quadratically constrained linear program (SIQLP) as follows:

\[
\max_{\alpha, t} \quad t
\]

subject to \(\alpha^T y = 0, \ 0 \leq \alpha \leq C \)

\[
t \leq S(\alpha, K), \ \forall K \succeq 0.
\] \hspace{1cm} (6)
We propose to solve Eq. (6) via an iterative algorithm, in which an additional constraint based on a kernel matrix K is added in each iteration.

It is guaranteed to converge to a globally optimal solution.

We call the finite set of kernel matrices $K = \{K_i\}_{i=1}^P$ as a localization set of the infinite many quadratic constraints in Eq. (6), and the suboptimal t and α to Eq. (6) based on K as the intermediate solution pair.

The proposed iterative algorithm consists of two steps:

- Step 1: Update the intermediate solution pair (t and α).
- Step 2: Update the localization set K.
Proposed Algorithm - Step 1

- Given an intermediate solution pair \((t \text{ and } \alpha)\), the localization set can be updated by solving

\[
\min_K S(\alpha, K) = \min_K \rho \|K - K_0\|_F^2 - \frac{1}{2} \alpha^T Y K Y \alpha. \tag{7}
\]

- The optimal \(K^*\) is given by (Luss and d’Aspremont, 2007)

\[
K^* = \left(K_0 + Y \alpha \alpha^T Y / (4\rho) \right)_+, \tag{8}
\]

where \(X_+\) denotes the positive part of a symmetric matrix \(X\).

- If the optimal \(K^*\) to Eq. (7) satisfies \(t \leq S(\alpha, K^*)\), the current intermediate solution is globally optimal to the SIQLP problem in Eq. (6); otherwise the optimal \(K^*\) is added into the localization set \(K\).
Given any localization set \(K = \{K_i\}_{i=1}^p \), the intermediate solution pair \((t, \alpha)\) can be computed by solving

\[
\max_{\alpha, t} \quad t \\
\text{subject to} \quad \alpha^T y = 0, \ 0 \leq \alpha \leq C \\
t \leq S(\alpha, K_i), \quad i = 1, \cdots, p.
\]

(9)

The problem in Eq. (9) is called the restricted master problem. It corresponds to a quadratically constrained linear program (QCLP), which can be solved via general purpose optimization solvers, such as MOSEK.

The complexity of QCLP depends on the number of quadratic constraints, i.e., the size of the localization set \(K \).
Convergence Analysis: Lower and Upper Bounds

- The proposed iterative algorithm alternates between updating the localization set \(K \) (step 1) and updating the intermediate solution pair \((t, \alpha)\) (step 2).
- At step 1, we compute the new kernel matrix \(K_i \) by
 \[
 S(\alpha_{i-1}, K_i) = \min_{K \succeq 0} S(\alpha_{i-1}, K). \tag{10}
 \]

We denote the Lower Bound as
 \[
 l_i^- = \max_j d_j = \max_j S(\alpha_{j-1}, K_j), \quad j = 1, \cdots, i. \tag{11}
 \]

- At step 2, we compute the Upper Bound as
 \[
 u_i^+ = t_i = \max_\alpha \min_{K \in K} S(\alpha, K) = \min_{K \in K} S(\alpha_i, K), \tag{12}
 \]
 where \(\alpha_i = \arg \max_\alpha (\min_{K \in K} S(\alpha, K)) \).
Global Convergence Property

Theorem

Let l_i^{-} and u_i^{+} be defined in Eq. (11) and Eq. (12), respectively. Let (α^*, t^*) be the optimal solution pair to Eq. (6). Then

$$u_i^{+} \geq t^* \geq l_i^{-}. \quad (13)$$

Moreover, the sequence $\{u_i^{+}\}$ is monotonically decreasing, and the sequences $\{l_i^{-}\}$ is monotonically non-decreasing.

- We can use the gap between u_i^{+} and l_i^{-} to trace the global convergence of the proposed algorithm.
- When the gap is smaller than a pre-specified value, we stop the iterative algorithm.
Pruning Strategy - I

- **Limitation of the proposed iterative algorithm:**
 1. The second step of the iterative algorithm is a QCLP problem.
 2. The complexity of solving a QCLP grows with the number of quadratic constraints.
 3. The number of quadratic constraints in QCLP increases by one at each iteration.

- **Pruning strategy:**
 We propose to prune the inactive constraints at each iteration.
Pruning Strategy - II

Pruning Strategy:

1. Let \(K^i = \{K_j\}_{j=1}^p \) be the localization set, and let \((t_i, \alpha_i) \) be the intermediate solution pair. We partition \(K^i \) as follows:

\[
K^i = K^i_{act} \cup K^i_{int}
\]

where \(K^i_{act} = \{K | t_i = S(\alpha_i, K)\} \) and \(K^i_{int} = \{K | t_i < S(\alpha_i, K)\} \).

2. Let \(K^* \) be the new kernel matrix. We propose to update the localization set as follows:

\[
K^{i+1} = K^i_{act} \cup K^*.
\]

Note that without pruning strategy, we apply \(K^{i+1} = K^i \cup K^* \).

The pruning strategy improves the computational efficiency while retaining the convergence property of the algorithm.
Relationship with Multiple Kernel Learning

- Lanckriet et al. (2004) propose to learn an optimal convex combination of a set of p pre-specified kernels $\{K_i\}_{i=1}^{p}$:

$$\begin{align*}
\min_{\{\theta_i\}} \max_{\alpha} & \quad \alpha^T e - \frac{1}{2} \alpha^T Y \left(\sum_{i=1}^{p} \theta_i K_i \right) Y \alpha \\
\text{subject to} & \quad \sum_{i=1}^{p} \theta_i \text{tr}(K_i) = 1, \alpha^T y = 0, 0 \leq \alpha \leq C. \quad (16)
\end{align*}$$

- Let K_0 be an indefinite kernel. Denote $u_i = \|K_i - K_0\|_F^2$, where u_i measures the distance between K_i and K_0 ($i = 1, \cdots, p$).

- We consider a regularized version of Eq. (16) as follows:

$$\begin{align*}
\min_{\{\theta_i\}} \max_{\alpha} & \quad \alpha^T e - \frac{1}{2} \alpha^T Y \left(\sum_{i=1}^{p} \theta_i K_i \right) Y \alpha + \rho \sum_{i=1}^{p} \theta_i u_i \\
\text{subject to} & \quad \sum_{i=1}^{p} \theta_i = 1, \quad \alpha^T y = 0, \quad 0 \leq \alpha \leq C, \quad (17)
\end{align*}$$

- It is equivalent to the proposed SIQLP formulation in Eq. (6).
Experimental Setup

- We evaluate the convergence property of the proposed algorithms, and compare them with other representative ones.

- We construct indefinite kernels through perturbation:
 1. Generate a set of Gaussian kernels and choose the best one via cross-validation in terms of classification accuracy.
 2. Generate a (perturbed) matrix E with zero mean and identity covariance matrix, and apply $\xi(E + E^T)/2$ as the perturbation.

- The parameters C and ρ in SIQLP are determined via cross-validation.

- The reported classification accuracy is averaged over 10 random partitions of the data into a training set and a test set with a ratio 4 : 1.
Global Convergence

Figure: Convergence of the algorithm without pruning.

- Upper bound (u_i^+) monotonically decreases while lower bound (l_i^-) monotonically increases, and they approach each other gradually.

- The proposed algorithms with or without pruning strategy result in a similar convergent rate.

Figure: Convergence of the algorithm with pruning.
Size of the Localization Set K

Figure: Number of kernels involved in the algorithms with and without pruning.

- With pruning strategy (red), the number of kernels involved in the iterative algorithm stabilizes around a smaller number.
- Without pruning strategy (black), the number of kernels increases gradually.
- For both cases, it takes around 150 iterations for convergence.
Classification Performance

Figure: Classification performance of the proposed algorithm with pruning.

- There is a large variation of classification accuracy at the first few iterations.
- The accuracy becomes stable after 40 iterations (around 76%).
- We may apply early-stopping strategy.
Comparative Study

Table: Comparison of the proposed algorithm with other representative ones in terms of classification accuracy.

| Data Set | Size | $\lambda^-_{\text{num.}}$ | $\lambda^+_{\text{num.}}$ | λ_{\min} | λ_{\max} | $\frac{|\lambda_{\max}}{\lambda_{\min}}|$ | Denoise | Flip | Shift | SVM | Indef. SVM |
|------------|--------|-----------------------------|-----------------------------|-------------------|-------------------|---|---------|------|-------|-------|-----------|
| Sonar | 208 | 57.41 | 150.62 | -1.36 | 18.42 | 13.55 | 78.57 | 79.52| 78.10 | 72.86 | 80.95 |
| Ionosphere | 351 | 169.62 | 181.45 | -25.50 | 94.49 | 3.71 | 75.57 | 71.43| 71.41 | 68.00 | 77.43 |
| B. Cancer | 683 | 323.21 | 359.82 | -3.51 | 390.52 | 111.26 | 95.38 | 95.62| 95.38 | 89.54 | 95.36 |
| Heart | 270 | 125.57 | 144.71 | -10.96 | 42.93 | 3.92 | 71.02 | 67.28| 65.42 | 65.43 | 72.22 |
| USPS-3-5 | 1200 | 520.12 | 680.31 | -3.54 | 81.99 | 23.16 | 96.25 | 96.88| 95.63 | 96.11 | 96.81 |
| Diabetes | 768 | 381.22 | 385.18 | -3.93 | 8.13 | 2.06 | 68.83 | 64.28| 62.98 | 66.23 | 70.08 |

- Indefinite SVM (Indef. SVM) is competitive with all other algorithms (Denoise, Flip, Shift, and SVM using indefinite kernel).
- Indef. SVM outperforms other algorithms, when the perturbed kernel matrix has a relative small $\frac{|\lambda_{\max}}{\lambda_{\min}}$, where the indefinite kernel matrices are highly non-PSD.
Conclusion and Future Work

Conclusion:

- Propose an SIQLP formulation for training SVM with indefinite kernels.
- Propose an iterative algorithm for solving the SIQLP formulation and conduct a convergence analysis.
- Propose a pruning strategy for improving the efficiency while retaining the convergence property.
- Analyze the close relationship between the proposed formulation and multiple kernel learning.

Future Work:

- Employ alternative optimization techniques.
- Apply the algorithm to real-world applications involving indefinite similarity matrices.
Acknowledgements

This research is in part supported by:

- Arizona State University
- National Science Foundation Grant IIS-0612069
Thank You!