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Overview

• Setup: Given (non)iid data D = (x1, ..., xn), predict xn+1

• Ultimate goal is to maximize profit or minimize loss

• Consider Models/Hypothesis Hi ∈M
• Max.Likelihood: Hbest = arg maxi p(D|Hi) (overfits if M large)

• Bayes: Posterior probability of Hi is p(Hi|D) ∝ p(D|Hi)p(Hi)

• Bayes needs prior(Hi)

• Occam+Epicurus: High prior for simple models.

• Kolmogorov/Solomonoff: Quantification of simplicity/complexity

• Bayes works if D is sampled from Htrue ∈M
• Universal AI = Universal Induction + Sequential Decision Theory
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Abstract

Machine learning is concerned with developing algorithms that learn

from experience, build models of the environment from the acquired

knowledge, and use these models for prediction. Machine learning is

usually taught as a bunch of methods that can solve a bunch of

problems (see my Introduction to SML last week). The following

tutorial takes a step back and asks about the foundations of machine

learning, in particular the (philosophical) problem of inductive inference,

(Bayesian) statistics, and artificial intelligence. The tutorial concentrates

on principled, unified, and exact methods.
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Philosophical Issues: Abstract

I start by considering the philosophical problems concerning machine

learning in general and induction in particular. I illustrate the problems

and their intuitive solution on various (classical) induction examples.

The common principle to their solution is Occam’s simplicity principle.

Based on Occam’s and Epicurus’ principle, Bayesian probability theory,

and Turing’s universal machine, Solomonoff developed a formal theory

of induction. I describe the sequential/online setup considered in this

tutorial and place it into the wider machine learning context.
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Philosophical Problems

• Does inductive inference work? Why? How?

• How to choose the model class?

• How to choose the prior?

• How to make optimal decisions in unknown environments?

• What is intelligence?
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On the Foundations of Machine Learning

• Example: Algorithm/complexity theory: The goal is to find fast

algorithms solving problems and to show lower bounds on their

computation time. Everything is rigorously defined: algorithm,

Turing machine, problem classes, computation time, ...

• Most disciplines start with an informal way of attacking a subject.

With time they get more and more formalized often to a point

where they are completely rigorous. Examples: set theory, logical

reasoning, proof theory, probability theory, infinitesimal calculus,

energy, temperature, quantum field theory, ...

• Machine learning: Tries to build and understand systems that learn

from past data, make good prediction, are able to generalize, act

intelligently, ... Many terms are only vaguely defined or there are

many alternate definitions.
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Example 1: Probability of Sunrise Tomorrow

What is the probability p(1|1d) that the sun will rise tomorrow?

(d = past # days sun rose, 1 =sun rises. 0 = sun will not rise)

• p is undefined, because there has never been an experiment that

tested the existence of the sun tomorrow (ref. class problem).

• The p = 1, because the sun rose in all past experiments.

• p = 1− ε, where ε is the proportion of stars that explode per day.

• p = d+1
d+2 , which is Laplace rule derived from Bayes rule.

• Derive p from the type, age, size and temperature of the sun, even

though we never observed another star with those exact properties.

Conclusion: We predict that the sun will rise tomorrow with high

probability independent of the justification.
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Example 2: Digits of a Computable Number

• Extend 14159265358979323846264338327950288419716939937?

• Looks random?!

• Frequency estimate: n = length of sequence. ki= number of

occured i =⇒ Probability of next digit being i is i
n . Asymptotically

i
n → 1

10 (seems to be) true.

• But we have the strong feeling that (i.e. with high probability) the

next digit will be 5 because the previous digits were the expansion

of π.

• Conclusion: We prefer answer 5, since we see more structure in the

sequence than just random digits.
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Example 3: Number Sequences

Sequence: x1, x2, x3, x4, x5, ...
1, 2, 3, 4, ?, ...

• x5 = 5, since xi = i for i = 1..4.

• x5 = 29, since xi = i4 − 10i3 + 35i2 − 49i + 24.

Conclusion: We prefer 5, since linear relation involves less arbitrary

parameters than 4th-order polynomial.

Sequence: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,?

• 61, since this is the next prime

• 60, since this is the order of the next simple group

Conclusion: We prefer answer 61, since primes are a more familiar

concept than simple groups.

On-Line Encyclopedia of Integer Sequences:

http://www.research.att.com/∼njas/sequences/
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Occam’s Razor to the Rescue

• Is there a unique principle which allows us to formally arrive at a

prediction which

- coincides (always?) with our intuitive guess -or- even better,

- which is (in some sense) most likely the best or correct answer?

• Yes! Occam’s razor: Use the simplest explanation consistent with

past data (and use it for prediction).

• Works! For examples presented and for many more.

• Actually Occam’s razor can serve as a foundation of machine

learning in general, and is even a fundamental principle (or maybe

even the mere definition) of science.

• Problem: Not a formal/mathematical objective principle.

What is simple for one may be complicated for another.
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Grue Emerald Paradox

Hypothesis 1: All emeralds are green.

Hypothesis 2: All emeralds found till y2010 are green,

thereafter all emeralds are blue.

• Which hypothesis is more plausible? H1! Justification?

• Occam’s razor: take simplest hypothesis consistent with data.

is the most important principle in machine learning and science.
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Confirmation Paradox
(i) R → B is confirmed by an R-instance with property B

(ii) ¬B → ¬R is confirmed by a ¬B-instance with property ¬R.

(iii) Since R → B and ¬B → ¬R are logically equivalent,
R → B is also confirmed by a ¬B-instance with property ¬R.

Example: Hypothesis (o): All ravens are black (R=Raven, B=Black).

(i) observing a Black Raven confirms Hypothesis (o).

(iii) observing a White Sock also confirms that all Ravens are Black,
since a White Sock is a non-Raven which is non-Black.

This conclusion sounds absurd.
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Problem Setup

• Induction problems can be phrased as sequence prediction tasks.

• Classification is a special case of sequence prediction.

(With some tricks the other direction is also true)

• This tutorial focusses on maximizing profit (minimizing loss).

We’re not (primarily) interested in finding a (true/predictive/causal)

model.

• Separating noise from data is not necessary in this setting!
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What This Tutorial is (Not) About
Dichotomies in Artificial Intelligence & Machine Learning

scope of my tutorial ⇔ scope of other tutorials
(machine) learning ⇔ (GOFAI) knowledge-based

statistical ⇔ logic-based

decision ⇔ prediction ⇔ induction ⇔ action

classification ⇔ regression

sequential / non-iid ⇔ independent identically distributed

online learning ⇔ offline/batch learning

passive prediction ⇔ active learning

Bayes ⇔ MDL ⇔ Expert ⇔ Frequentist

uninformed / universal ⇔ informed / problem-specific

conceptual/mathematical issues ⇔ computational issues

exact/principled ⇔ heuristic

supervised learning ⇔ unsupervised ⇔ RL learning

exploitation ⇔ exploration
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Sequential/Online Prediction – Setup

In sequential or online prediction, for times t = 1, 2, 3, ...,

our predictor p makes a prediction yp
t ∈ Y

based on past observations x1, ..., xt−1.

Thereafter xt ∈ X is observed and p suffers Loss(xt, y
p
t ).

The goal is to design predictors with small total loss or cumulative

Loss1:T (p) :=
∑T

t=1 Loss(xt, y
p
t ).

Applications are abundant, e.g. weather or stock market forecasting.

Example:
Loss(x, y) X = {sunny , rainy}

Y =
{

umbrella
sunglasses

}
0.1 0.3
0.0 1.0

Setup also includes: Classification and Regression problems.
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Bayesian Sequence Prediction: Contents
• Uncertainty and Probability

• Frequency Interpretation: Counting

• Objective Interpretation: Uncertain Events

• Subjective Interpretation: Degrees of Belief

• Bayes’ and Laplace’s Rules

• Envelope Paradox

• The Bayes-mixture distribution

• Relative Entropy and Bound

• Predictive Convergence

• Sequential Decisions and Loss Bounds

• Generalization: Continuous Probability Classes

• Summary
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Bayesian Sequence Prediction: Abstract

The aim of probability theory is to describe uncertainty. There are

various sources and interpretations of uncertainty. I compare the

frequency, objective, and subjective probabilities, and show that they all

respect the same rules, and derive Bayes’ and Laplace’s famous and

fundamental rules. Then I concentrate on general sequence prediction

tasks. I define the Bayes mixture distribution and show that the

posterior converges rapidly to the true posterior by exploiting some

bounds on the relative entropy. Finally I show that the mixture predictor

is also optimal in a decision-theoretic sense w.r.t. any bounded loss

function.
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Uncertainty and Probability

The aim of probability theory is to describe uncertainty.

Sources/interpretations for uncertainty:

• Frequentist: probabilities are relative frequencies.

(e.g. the relative frequency of tossing head.)

• Objectivist: probabilities are real aspects of the world.

(e.g. the probability that some atom decays in the next hour)

• Subjectivist: probabilities describe an agent’s degree of belief.

(e.g. it is (im)plausible that extraterrestrians exist)
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Frequency Interpretation: Counting

• The frequentist interprets probabilities as relative frequencies.

• If in a sequence of n independent identically distributed (i.i.d.)

experiments (trials) an event occurs k(n) times, the relative

frequency of the event is k(n)/n.

• The limit limn→∞ k(n)/n is defined as the probability of the event.

• For instance, the probability of the event head in a sequence of

repeatedly tossing a fair coin is 1
2 .

• The frequentist position is the easiest to grasp, but it has several

shortcomings:

• Problems: definition circular, limited to i.i.d, reference class

problem.
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Objective Interpretation: Uncertain Events

• For the objectivist probabilities are real aspects of the world.

• The outcome of an observation or an experiment is not

deterministic, but involves physical random processes.

• The set Ω of all possible outcomes is called the sample space.

• It is said that an event E ⊂ Ω occurred if the outcome is in E.

• In the case of i.i.d. experiments the probabilities p assigned to

events E should be interpretable as limiting frequencies, but the

application is not limited to this case.

• (Some) probability axioms:

p(Ω) = 1 and p({}) = 0 and 0 ≤ p(E) ≤ 1.

p(A ∪B) = p(A) + p(B)− p(A ∩B).
p(B|A) = p(A∩B)

p(A) is the probability of B given event A occurred.
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Subjective Interpretation: Degrees of Belief

• The subjectivist uses probabilities to characterize an agent’s degree

of belief in something, rather than to characterize physical random

processes.

• This is the most relevant interpretation of probabilities in AI.

• We define the plausibility of an event as the degree of belief in the

event, or the subjective probability of the event.

• It is natural to assume that plausibilities/beliefs Bel(·|·) can be repr.

by real numbers, that the rules qualitatively correspond to common

sense, and that the rules are mathematically consistent. ⇒
• Cox’s theorem: Bel(·|A) is isomorphic to a probability function

p(·|·) that satisfies the axioms of (objective) probabilities.

• Conclusion: Beliefs follow the same rules as probabilities
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Bayes’ Famous Rule
Let D be some possible data (i.e. D is event with p(D) > 0) and

{Hi}i∈I be a countable complete class of mutually exclusive hypotheses

(i.e. Hi are events with Hi ∩Hj = {} ∀i 6= j and
⋃

i∈I Hi = Ω).

Given: p(Hi) = a priori plausibility of hypotheses Hi (subj. prob.)

Given: p(D|Hi) = likelihood of data D under hypothesis Hi (obj. prob.)

Goal: p(Hi|D) = a posteriori plausibility of hypothesis Hi (subj. prob.)

Solution: p(Hi|D) =
p(D|Hi)p(Hi)∑
i∈I p(D|Hi)p(Hi)

Proof: From the definition of conditional probability and
∑

i∈I

p(Hi|...) = 1 ⇒
∑

i∈I

p(D|Hi)p(Hi) =
∑

i∈I

p(Hi|D)p(D) = p(D)
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Example: Bayes’ and Laplace’s Rule

Assume data is generated by a biased coin with head probability θ, i.e.

Hθ :=Bernoulli(θ) with θ ∈ Θ := [0, 1].

Finite sequence: x = x1x2...xn with n1 ones and n0 zeros.

Sample infinite sequence: ω ∈ Ω = {0, 1}∞

Basic event: Γx = {ω : ω1 = x1, ..., ωn = xn} = set of all sequences

starting with x.

Data likelihood: pθ(x) := p(Γx|Hθ) = θn1(1− θ)n0 .

Bayes (1763): Uniform prior plausibility: p(θ) := p(Hθ) = 1
(
R 1

0
p(θ) dθ = 1 instead

P
i∈I p(Hi) = 1)

Evidence: p(x) =
∫ 1

0
pθ(x)p(θ) dθ =

∫ 1

0
θn1(1− θ)n0 dθ = n1!n0!

(n0+n1+1)!
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Example: Bayes’ and Laplace’s Rule

Bayes: Posterior plausibility of θ

after seeing x is:

p(θ|x) =
p(x|θ)p(θ)

p(x)
=

(n+1)!
n1!n0!

θn1(1−θ)n0

.

Laplace: What is the probability of seeing 1 after having observed x?

p(xn+1 = 1|x1...xn) =
p(x1)
p(x)

=
n1+1
n + 2

Laplace believed that the sun had risen for 5000 years = 1’826’213 days,

so he concluded that the probability of doomsday tomorrow is 1
1826215 .
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Exercise: Envelope Paradox

• I offer you two closed envelopes, one of them contains twice the

amount of money than the other. You are allowed to pick one and

open it. Now you have two options. Keep the money or decide for

the other envelope (which could double or half your gain).

• Symmetry argument: It doesn’t matter whether you switch, the

expected gain is the same.

• Refutation: With probability p = 1/2, the other envelope contains

twice/half the amount, i.e. if you switch your expected gain

increases by a factor 1.25=(1/2)*2+(1/2)*(1/2).

• Present a Bayesian solution.
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The Bayes-Mixture Distribution ξ
• Assumption: The true (objective) environment µ is unknown.

• Bayesian approach: Replace true probability distribution µ by a
Bayes-mixture ξ.

• Assumption: We know that the true environment µ is contained in
some known countable (in)finite set M of environments.

• The Bayes-mixture ξ is defined as

ξ(x1:m) :=
∑

ν∈M
wνν(x1:m) with

∑

ν∈M
wν = 1, wν > 0 ∀ν

• The weights wν may be interpreted as the prior degree of belief that
the true environment is ν, or kν = ln w−1

ν as a complexity penalty
(prefix code length) of environment ν.

• Then ξ(x1:m) could be interpreted as the prior subjective belief
probability in observing x1:m.
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Convergence and Decisions

Goal: Given seq. x1:t−1 ≡ x<t ≡ x1x2...xt−1, predict continuation xt.

Expectation w.r.t. µ: E[f(ω1:n)] :=
∑

x∈Xn µ(x)f(x)

KL-divergence: Dn(µ||ξ) := E[ln µ(ω1:n)
ξ(ω1:n) ] ≤ ln w−1

µ ∀n
Hellinger distance: ht(ω<t) :=

∑
a∈X (

√
ξ(a|ω<t)−

√
µ(a|ω<t))2

Rapid convergence:
∑∞

t=1 E[ht(ω<t)] ≤ D∞ ≤ ln w−1
µ < ∞ implies

ξ(xt|ω<t) → µ(xt|ω<t), i.e. ξ is a good substitute for unknown µ.

Bayesian decisions: Bayes-optimal predictor Λξ suffers instantaneous

loss lΛξ
t ∈ [0, 1] at t only slightly larger than the µ-optimal predictor Λµ:∑∞

t=1 E[(
√

lΛξ
t −√

lΛµ
t )2] ≤ ∑∞

t=1 2E[ht] < ∞ implies rapid lΛξ
t → lΛµ

t.

Pareto-optimality of Λξ: Every predictor with loss smaller than Λξ in

some environment µ ∈M must be worse in another environment.
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Generalization: Continuous Classes M
In statistical parameter estimation one often has a continuous

hypothesis class (e.g. a Bernoulli(θ) process with unknown θ∈ [0, 1]).

M := {νθ : θ ∈ IRd}, ξ(x) :=
∫

IRd

dθ w(θ) νθ(x),
∫

IRd

dθ w(θ) = 1

Under weak regularity conditions [CB90,H’03]:

Theorem: Dn(µ||ξ) ≤ ln w(µ)−1 + d
2 ln n

2π + O(1)

where O(1) depends on the local curvature (parametric complexity) of

ln νθ, and is independent n for many reasonable classes, including all

stationary (kth-order) finite-state Markov processes (k = 0 is i.i.d.).

Dn ∝ log(n) = o(n) still implies excellent prediction and decision for

most n. [RH’07]
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Bayesian Sequence Prediction: Summary

• The aim of probability theory is to describe uncertainty.

• Various sources and interpretations of uncertainty:

frequency, objective, and subjective probabilities.

• They all respect the same rules.

• General sequence prediction: Use known (subj.) Bayes mixture

ξ =
∑

ν∈M wνν in place of unknown (obj.) true distribution µ.

• Bound on the relative entropy between ξ and µ.

⇒ posterior of ξ converges rapidly to the true posterior µ.

• ξ is also optimal in a decision-theoretic sense w.r.t. any bounded

loss function.

• No structural assumptions on M and ν ∈M.
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Universal Inductive Inferences: Contents

• Foundations of Universal Induction

• Bayesian Sequence Prediction and Confirmation

• Fast Convergence

• How to Choose the Prior – Universal

• Kolmogorov Complexity

• How to Choose the Model Class – Universal

• Universal is Better than Continuous Class

• Summary / Outlook / Literature
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Universal Inductive Inferences: Abstract

Solomonoff completed the Bayesian framework by providing a rigorous,

unique, formal, and universal choice for the model class and the prior. I

will discuss in breadth how and in which sense universal (non-i.i.d.)

sequence prediction solves various (philosophical) problems of traditional

Bayesian sequence prediction. I show that Solomonoff’s model possesses

many desirable properties: Fast convergence, and in contrast to most

classical continuous prior densities has no zero p(oste)rior problem, i.e.

can confirm universal hypotheses, is reparametrization and regrouping

invariant, and avoids the old-evidence and updating problem. It even

performs well (actually better) in non-computable environments.
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Induction Examples

Sequence prediction: Predict weather/stock-quote/... tomorrow, based

on past sequence. Continue IQ test sequence like 1,4,9,16,?

Classification: Predict whether email is spam.

Classification can be reduced to sequence prediction.

Hypothesis testing/identification: Does treatment X cure cancer?

Do observations of white swans confirm that all ravens are black?

These are instances of the important problem of inductive inference or

time-series forecasting or sequence prediction.

Problem: Finding prediction rules for every particular (new) problem is

possible but cumbersome and prone to disagreement or contradiction.

Goal: A single, formal, general, complete theory for prediction.

Beyond induction: active/reward learning, fct. optimization, game theory.
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Foundations of Universal Induction
Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

Epicurus’ principle of multiple explanations
If more than one theory is consistent with the observations, keep
all theories.
Bayes’ rule for conditional probabilities
Given the prior belief/probability one can predict all future prob-
abilities.
Turing’s universal machine
Everything computable by a human using a fixed procedure can
also be computed by a (universal) Turing machine.
Kolmogorov’s complexity
The complexity or information content of an object is the length
of its shortest description on a universal Turing machine.
Solomonoff’s universal prior=Ockham+Epicurus+Bayes+Turing
Solves the question of how to choose the prior if nothing is known.
⇒ universal induction, formal Occam, AIT,MML,MDL,SRM,...
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Bayesian Sequence Prediction and Confirmation

• Assumption: Sequence ω ∈ X∞ is sampled from the “true”

probability measure µ, i.e. µ(x) := P[x|µ] is the µ-probability that

ω starts with x ∈ Xn.

• Model class: We assume that µ is unknown but known to belong to

a countable class of environments=models=measures

M = {ν1, ν2, ...}. [no i.i.d./ergodic/stationary assumption]

• Hypothesis class: {Hν : ν ∈M} forms a mutually exclusive and

complete class of hypotheses.

• Prior: wν := P[Hν ] is our prior belief in Hν

⇒ Evidence: ξ(x) := P[x] =
∑

ν∈M P[x|Hν ]P[Hν ] =
∑

ν wνν(x)
must be our (prior) belief in x.

⇒ Posterior: wν(x) := P[Hν |x] = P[x|Hν ]P[Hν ]
P[x] is our posterior belief

in ν (Bayes’ rule).
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How to Choose the Prior?

• Subjective: quantifying personal prior belief (not further discussed)

• Objective: based on rational principles (agreed on by everyone)

• Indifference or symmetry principle: Choose wν = 1
|M| for finite M.

• Jeffreys or Bernardo’s prior: Analogue for compact parametric

spaces M.

• Problem: The principles typically provide good objective priors for

small discrete or compact spaces, but not for “large” model classes

like countably infinite, non-compact, and non-parametric M.

• Solution: Occam favors simplicity ⇒ Assign high (low) prior to

simple (complex) hypotheses.

• Problem: Quantitative and universal measure of simplicity/complexity.
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Kolmogorov Complexity K(x)
K. of string x is the length of the shortest (prefix) program producing x:

K(x) := minp{l(p) : U(p) = x}, U = universal TM

For non-string objects o (like numbers and functions) we define

K(o) := K(〈o〉), where 〈o〉 ∈ X ∗ is some standard code for o.

+ Simple strings like 000...0 have small K,

irregular (e.g. random) strings have large K.

• The definition is nearly independent of the choice of U .

+ K satisfies most properties an information measure should satisfy.

+ K shares many properties with Shannon entropy but is superior.

− K(x) is not computable, but only semi-computable from above.

Fazit:
K is an excellent universal complexity measure,

suitable for quantifying Occam’s razor.
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Schematic Graph of Kolmogorov Complexity
Although K(x) is incomputable, we can draw a schematic graph
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The Universal Prior
• Quantify the complexity of an environment ν or hypothesis Hν by

its Kolmogorov complexity K(ν).

• Universal prior: wν = wU
ν := 2−K(ν) is a decreasing function in

the model’s complexity, and sums to (less than) one.

⇒ Dn ≤ K(µ) ln 2, i.e. the number of ε-deviations of ξ from µ or lΛξ

from lΛµ is proportional to the complexity of the environment.

• No other semi-computable prior leads to better prediction (bounds).

• For continuous M, we can assign a (proper) universal prior (not

density) wU
θ = 2−K(θ) > 0 for computable θ, and 0 for uncomp. θ.

• This effectively reduces M to a discrete class {νθ ∈M : wU
θ > 0}

which is typically dense in M.

• This prior has many advantages over the classical prior (densities).
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Universal Choice of Class M
• The larger M the less restrictive is the assumption µ ∈M.

• The class MU of all (semi)computable (semi)measures, although

only countable, is pretty large, since it includes all valid physics

theories. Further, ξU is semi-computable [ZL70].

• Solomonoff’s universal prior M(x) := probability that the output of

a universal TM U with random input starts with x.

• Formally: M(x) :=
∑

p : U(p)=x∗ 2−`(p) where the sum is over all

(minimal) programs p for which U outputs a string starting with x.

• M may be regarded as a 2−`(p)-weighted mixture over all

deterministic environments νp. (νp(x) = 1 if U(p) = x∗ and 0 else)

• M(x) coincides with ξU (x) within an irrelevant multiplicative constant.
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Universal is better than Continuous Class&Prior
• Problem of zero prior / confirmation of universal hypotheses:

P[All ravens black|n black ravens]

{≡ 0 in Bayes-Laplace model
fast−→ 1 for universal prior wU

θ

• Reparametrization and regrouping invariance: wU
θ = 2−K(θ) always

exists and is invariant w.r.t. all computable reparametrizations f .
(Jeffrey prior only w.r.t. bijections, and does not always exist)

• The Problem of Old Evidence: No risk of biasing the prior towards
past data, since wU

θ is fixed and independent of M.

• The Problem of New Theories: Updating of M is not necessary,
since MU includes already all.

• M predicts better than all other mixture predictors based on any
(continuous or discrete) model class and prior, even in
non-computable environments.
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Convergence and Loss Bounds
• Total (loss) bounds:

∑∞
n=1 E[hn]

×
< K(µ) ln 2, where

ht(ω<t) :=
∑

a∈X (
√

ξ(a|ω<t)−
√

µ(a|ω<t))2.
• Instantaneous i.i.d. bounds: For i.i.d. M with continuous, discrete,

and universal prior, respectively:

E[hn]
×
< 1

n ln w(µ)−1 and E[hn]
×
< 1

n ln w−1
µ = 1

nK(µ) ln 2.

• Bounds for computable environments: Rapidly M(xt|x<t) → 1 on
every computable sequence x1:∞ (whichsoever, e.g. 1∞ or the digits
of π or e), i.e. M quickly recognizes the structure of the sequence.

• Weak instantaneous bounds: valid for all n and x1:n and x̄n 6= xn:
2−K(n)

×
< M(x̄n|x<n)

×
< 22K(x1:n∗)−K(n)

• Magic instance numbers: e.g. M(0|1n) ×= 2−K(n) → 0, but spikes
up for simple n. M is cautious at magic instance numbers n.

• Future bounds / errors to come: If our past observations ω1:n

contain a lot of information about µ, we make few errors in future:∑∞
t=n+1 E[ht|ω1:n]

+
< [K(µ|ω1:n)+K(n)] ln 2
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Universal Inductive Inference: Summary

Universal Solomonoff prediction solves/avoids/meliorates many problems

of (Bayesian) induction. We discussed:

+ general total bounds for generic class, prior, and loss,

+ the Dn bound for continuous classes,

+ the problem of zero p(oste)rior & confirm. of universal hypotheses,

+ reparametrization and regrouping invariance,

+ the problem of old evidence and updating,

+ that M works even in non-computable environments,

+ how to incorporate prior knowledge,
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The Universal Similarity Metric: Contents

• Kolmogorov Complexity

• The Universal Similarity Metric

• Tree-Based Clustering

• Genomics & Phylogeny: Mammals, SARS Virus & Others

• Classification of Different File Types

• Language Tree (Re)construction

• Classify Music w.r.t. Composer

• Further Applications

• Summary
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The Universal Similarity Metric: Abstract

The MDL method has been studied from very concrete and highly tuned

practical applications to general theoretical assertions. Sequence

prediction is just one application of MDL. The MDL idea has also been

used to define the so called information distance or universal similarity

metric, measuring the similarity between two individual objects. I will

present some very impressive recent clustering applications based on

standard Lempel-Ziv or bzip2 compression, including a completely

automatic reconstruction (a) of the evolutionary tree of 24 mammals

based on complete mtDNA, and (b) of the classification tree of 52

languages based on the declaration of human rights and (c) others.

Based on [Cilibrasi&Vitanyi’05]
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Conditional Kolmogorov Complexity

Question: When is object=string x similar to object=string y?

Universal solution: x similar y ⇔ x can be easily (re)constructed from y

⇔ Kolmogorov complexity K(x|y) := min{`(p) : U(p, y) = x} is small

Examples:

1) x is very similar to itself (K(x|x) += 0)

2) A processed x is similar to x (K(f(x)|x) += 0 if K(f) = O(1)).
e.g. doubling, reverting, inverting, encrypting, partially deleting x.

3) A random string is with high probability not similar to any other

string (K(random|y) =length(random)).

The problem with K(x|y) as similarity=distance measure is that it is

neither symmetric nor normalized nor computable.
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The Universal Similarity Metric

• Symmetrization and normalization leads to a/the universal metric d:

0 ≤ d(x, y) :=
max{K(x|y),K(y|x)}

max{K(x),K(y)} ≤ 1

• Every effective similarity between x and y is detected by d

• Use K(x|y)≈K(xy)−K(y) (coding T) and K(x)≡KU (x)≈KT (x)
=⇒ computable approximation: Normalized compression distance:

d(x, y) ≈ KT (xy)−min{KT (x),KT (y)}
max{KT (x), KT (y)} . 1

• For T choose Lempel-Ziv or gzip or bzip(2) (de)compressor in the

applications below.

• Theory: Lempel-Ziv compresses asymptotically better than any

probabilistic finite state automaton predictor/compressor.
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Tree-Based Clustering

• If many objects x1, ..., xn need to be compared, determine the

similarity matrix Mij= d(xi, xj) for 1 ≤ i, j ≤ n

• Now cluster similar objects.

• There are various clustering techniques.

• Tree-based clustering: Create a tree connecting similar objects,

• e.g. quartet method (for clustering)
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Genomics & Phylogeny: Mammals

Let x1, ..., xn be mitochondrial genome sequences of different mammals:

Partial distance matrix Mij using bzip2(?)

Cat Echidna Gorilla ...

BrownBear Chimpanzee FinWhale HouseMouse ...

Carp Cow Gibbon Human ...

BrownBear 0.002 0.943 0.887 0.935 0.906 0.944 0.915 0.939 0.940 0.934 0.930 ...

Carp 0.943 0.006 0.946 0.954 0.947 0.955 0.952 0.951 0.957 0.956 0.946 ...

Cat 0.887 0.946 0.003 0.926 0.897 0.942 0.905 0.928 0.931 0.919 0.922 ...

Chimpanzee 0.935 0.954 0.926 0.006 0.926 0.948 0.926 0.849 0.731 0.943 0.667 ...

Cow 0.906 0.947 0.897 0.926 0.006 0.936 0.885 0.931 0.927 0.925 0.920 ...

Echidna 0.944 0.955 0.942 0.948 0.936 0.005 0.936 0.947 0.947 0.941 0.939 ...

FinbackWhale 0.915 0.952 0.905 0.926 0.885 0.936 0.005 0.930 0.931 0.933 0.922 ...

Gibbon 0.939 0.951 0.928 0.849 0.931 0.947 0.930 0.005 0.859 0.948 0.844 ...

Gorilla 0.940 0.957 0.931 0.731 0.927 0.947 0.931 0.859 0.006 0.944 0.737 ...

HouseMouse 0.934 0.956 0.919 0.943 0.925 0.941 0.933 0.948 0.944 0.006 0.932 ...

Human 0.930 0.946 0.922 0.667 0.920 0.939 0.922 0.844 0.737 0.932 0.005 ...

... ... ... ... ... ... ... ... ... ... ... ... ...
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Genomics & Phylogeny: Mammals
Evolutionary tree built from complete mammalian mtDNA of 24 species:

Carp
Cow

BlueWhale
FinbackWhale

Cat
BrownBear
PolarBear
GreySeal

HarborSeal
Horse

WhiteRhino

Ferungulates

Gibbon
Gorilla

Human
Chimpanzee

PygmyChimp
Orangutan

SumatranOrangutan

Primates

Eutheria

HouseMouse
Rat

Eutheria - Rodents

Opossum
Wallaroo

Metatheria

Echidna
Platypus

Prototheria
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Genomics & Phylogeny: SARS Virus and Others

• Clustering of SARS virus in relation to potential similar virii based

on complete sequenced genome(s) using bzip2:

• The relations are very similar to the definitive tree based on

medical-macrobio-genomics analysis from biologists.
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Genomics & Phylogeny: SARS Virus and Others

AvianAdeno1CELO

n1

n6

n11

AvianIB1

n13

n5

AvianIB2

BovineAdeno3HumanAdeno40

DuckAdeno1

n3

HumanCorona1

n8

SARSTOR2v120403

n2

MeaslesMora

n12
MeaslesSch

MurineHep11

n10
n7

MurineHep2

PRD1

n4

n9

RatSialCorona

SIRV1

SIRV2

n0
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Classification of Different File Types

Classification of files based on markedly different file types using bzip2

• Four mitochondrial gene sequences

• Four excerpts from the novel “The Zeppelin’s Passenger”

• Four MIDI files without further processing

• Two Linux x86 ELF executables (the cp and rm commands)

• Two compiled Java class files

No features of any specific domain of application are used!
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Classification of Different File Types

ELFExecutableA

n12n7

ELFExecutableB

GenesBlackBearA

n13

GenesPolarBearB

n5

GenesFoxC

n10

GenesRatD

JavaClassA

n6

n1

JavaClassB

MusicBergA

n8 n2

MusicBergB

MusicHendrixA
n0

n3

MusicHendrixB

TextA

n9

n4

TextB

TextC

n11
TextD

Perfect classification!
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Language Tree (Re)construction

• Let x1, ..., xn be the “The Universal Declaration of Human Rights”

in various languages 1, ..., n.

• Distance matrix Mij based on gzip. Language tree constructed

from Mij by the Fitch-Margoliash method [Li&al’03]

• All main linguistic groups can be recognized (next slide)



Basque [Spain]
Hungarian [Hungary]
Polish [Poland]
Sorbian [Germany]
Slovak [Slovakia]
Czech [Czech Rep]
Slovenian [Slovenia]
Serbian [Serbia]
Bosnian [Bosnia]

Icelandic [Iceland]
Faroese [Denmark]
Norwegian Bokmal [Norway]
Danish [Denmark]
Norwegian Nynorsk [Norway]
Swedish [Sweden]
Afrikaans
Dutch [Netherlands]
Frisian [Netherlands]
Luxembourgish [Luxembourg]
German [Germany]
Irish Gaelic [UK]
Scottish Gaelic [UK]
Welsh [UK]
Romani Vlach [Macedonia]
Romanian [Romania]
Sardinian [Italy]
Corsican [France]
Sammarinese [Italy]
Italian [Italy]
Friulian [Italy]
Rhaeto Romance [Switzerland]
Occitan [France]
Catalan [Spain]
Galician [Spain]
Spanish [Spain]
Portuguese [Portugal]
Asturian [Spain]
French [France]
English [UK]
Walloon [Belgique]
OccitanAuvergnat [France]
Maltese [Malta]
Breton [France]
Uzbek [Utzbekistan]
Turkish [Turkey]
Latvian [Latvia]
Lithuanian [Lithuania]
Albanian [Albany]
Romani Balkan [East Europe]
Croatian [Croatia]

Finnish [Finland]
Estonian [Estonia]

ROMANCE

BALTIC

UGROFINNIC

CELTIC

GERMANIC

SLAVIC

ALTAIC
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Classify Music w.r.t. Composer
Let m1, ..., mn be pieces of music in MIDI format.

Preprocessing the MIDI files:

• Delete identifying information (composer, title, ...), instrument

indicators, MIDI control signals, tempo variations, ...

• Keep only note-on and note-off information.

• A note, k ∈ ZZ half-tones above the average note is coded as a

signed byte with value k.

• The whole piece is quantized in 0.05 second intervals.

• Tracks are sorted according to decreasing average volume, and then

output in succession.

Processed files x1, ..., xn still sounded like the original.
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Classify Music w.r.t. Composer
12 pieces of music: 4×Bach + 4×Chopin + 4×Debussy. Class. by bzip2

BachWTK2F1

n5

n8

BachWTK2F2
BachWTK2P1

n0

BachWTK2P2

ChopPrel15n9

n1

ChopPrel1

n6
n3

ChopPrel22

ChopPrel24

DebusBerg1

n7

DebusBerg4

n4
DebusBerg2

n2

DebusBerg3

Perfect grouping of processed MIDI files w.r.t. composers.
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Further Applications

• Classification of Fungi

• Optical character recognition

• Classification of Galaxies

• Clustering of novels w.r.t. authors

• Larger data sets

See [Cilibrasi&Vitanyi’03]



Marcus Hutter - 61 - Universal Induction & Intelligence

The Clustering Method: Summary

• based on the universal similarity metric,

• based on Kolmogorov complexity,

• approximated by bzip2,

• with the similarity matrix represented by tree,

• approximated by the quartet method

• leads to excellent classification in many domains.
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Universal Rational Agents: Contents

• Rational agents

• Sequential decision theory

• Reinforcement learning

• Value function

• Universal Bayes mixture and AIXI model

• Self-optimizing policies

• Pareto-optimality

• Environmental Classes
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Universal Rational Agents: Abstract

Sequential decision theory formally solves the problem of rational agents

in uncertain worlds if the true environmental prior probability distribution

is known. Solomonoff’s theory of universal induction formally solves the

problem of sequence prediction for unknown prior distribution.

Here we combine both ideas and develop an elegant parameter-free

theory of an optimal reinforcement learning agent embedded in an

arbitrary unknown environment that possesses essentially all aspects of

rational intelligence. The theory reduces all conceptual AI problems to

pure computational ones.

We give strong arguments that the resulting AIXI model is the most

intelligent unbiased agent possible. Other discussed topics are relations

between problem classes.
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The Agent Model

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

y1 y2 y3 y4 y5 y6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...

©©©©©¼ HHHHHY

³³³³³³³1PPPPPPPq

Most if not all AI problems can be formulated within the agent

framework
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Rational Agents in Deterministic Environments

- p :X ∗→Y∗ is deterministic policy of the agent,

p(x<k) = y1:k with x<k ≡ x1...xk−1.

- q :Y∗→X ∗ is deterministic environment,

q(y1:k) = x1:k with y1:k ≡ y1...yk.

- Input xk≡rkok consists of a regular informative part ok

and reward rk ∈ [0..rmax].

- Value V pq
km := rk + ... + rm,

optimal policy pbest := arg maxp V pq
1m,

Lifespan or initial horizon m.
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Agents in Probabilistic Environments

Given history y1:kx<k, the probability that the environment leads to

perception xk in cycle k is (by definition) σ(xk|y1:kx<k).

Abbreviation (chain rule)

σ(x1:m|y1:m) = σ(x1|y1)·σ(x2|y1:2x1)· ... ·σ(xm|y1:mx<m)

The average value of policy p with horizon m in environment σ is

defined as

V p
σ := 1

m

∑
x1:m

(r1+ ... +rm)σ(x1:m|y1:m)|y1:m=p(x<m)

The goal of the agent should be to maximize the value.
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Optimal Policy and Value

The σ-optimal policy pσ := arg maxp V p
σ maximizes V p

σ ≤ V ∗
σ := V pσ

σ .

Explicit expressions for the action yk in cycle k of the σ-optimal policy

pσ and their value V ∗
σ are

yk = arg max
yk

∑
xk

max
yk+1

∑
xk+1

... max
ym

∑
xm

(rk+ ...+rm)·σ(xk:m|y1:mx<k),

V ∗
σ = 1

m max
y1

∑
x1

max
y2

∑
x2

... max
ym

∑
xm

(r1+ ... +rm)·σ(x1:m|y1:m).

Keyword: Expectimax tree/algorithm.
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Expectimax Tree/Algorithm

r
¡

¡
¡

¡¡
yk=0

@
@

@
@@

yk=1

max| {z }V
∗

σ (yx<k) = max
yk

V
∗

σ (yx<kyk)

action yk with max value.

q
¢

¢
¢

¢¢
ok=0
rk= ...

A
A
A
AA
ok=1
rk= ...

E|{z}
q

¢
¢

¢
¢¢

ok=0
rk= ...

A
A
A
AA

ok=1
rk= ...

E|{z}
V
∗

σ (yx<kyk) =
X
xk

[rk + V
∗

σ (yx1:k)]σ(xk|yx<kyk)

σ expected reward rk and observation ok.

q
¢

¢¢
A
AA

max
^

yk+1

q
¢

¢¢
A
AA

max
^

yk+1

q
¢

¢¢
A
AA

max
^

yk+1

q
¢

¢¢
A
AA

max
^

V
∗

σ (yx1:k) = max
yk+1

V
∗

σ (yx1:kyk+1)

· · · · · · · · · · · · · · · · · · · · · · · ·
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Known environment µ

• Assumption: µ is the true environment in which the agent operates

• Then, policy pµ is optimal in the sense that no other policy for an

agent leads to higher µAI -expected reward.

• Special choices of µ: deterministic or adversarial environments,

Markov decision processes (mdps), adversarial environments.

• There is no principle problem in computing the optimal action yk as

long as µAI is known and computable and X , Y and m are finite.

• Things drastically change if µAI is unknown ...
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The Bayes-mixture distribution ξ
Assumption: The true environment µ is unknown.

Bayesian approach: The true probability distribution µAI is not learned

directly, but is replaced by a Bayes-mixture ξAI .

Assumption: We know that the true environment µ is contained in some

known (finite or countable) set M of environments.

The Bayes-mixture ξ is defined as

ξ(x1:m|y1:m) :=
∑

ν∈M
wνν(x1:m|y1:m) with

∑

ν∈M
wν = 1, wν > 0 ∀ν

The weights wν may be interpreted as the prior degree of belief that the

true environment is ν.

Then ξ(x1:m|y1:m) could be interpreted as the prior subjective belief

probability in observing x1:m, given actions y1:m.
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Questions of Interest

• It is natural to follow the policy pξ which maximizes V p
ξ .

• If µ is the true environment the expected reward when following

policy pξ will be V pξ

µ .

• The optimal (but infeasible) policy pµ yields reward V pµ

µ ≡ V ∗
µ .

• Are there policies with uniformly larger value than V pξ

µ ?

• How close is V pξ

µ to V ∗
µ ?

• What is the most general class M and weights wν .
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A universal choice of ξ and M
• We have to assume the existence of some structure on the

environment to avoid the No-Free-Lunch Theorems [Wolpert 96].

• We can only unravel effective structures which are describable by

(semi)computable probability distributions.

• So we may include all (semi)computable (semi)distributions in M.

• Occam’s razor and Epicurus’ principle of multiple explanations tell

us to assign high prior belief to simple environments.

• Using Kolmogorov’s universal complexity measure K(ν) for

environments ν one should set wν ∼ 2−K(ν), where K(ν) is the

length of the shortest program on a universal TM computing ν.

• The resulting AIXI model [Hutter:00] is a unification of (Bellman’s)

sequential decision and Solomonoff’s universal induction theory.
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The AIXI Model in one Line
The most intelligent unbiased learning agent

yk = arg max
yk

∑
xk

... max
ym

∑
xm

[r(xk)+...+r(xm)]
∑

q : U(q,y1:m)=x1:m

2−`(q)

is an elegant mathematical theory of AI

Claim: AIXI is the most intelligent environmental independent, i.e.

universally optimal, agent possible.

Proof: For formalizations, quantifications, and proofs, see [Hut05].

Applications: Strategic Games, Function Minimization, Supervised

Learning from Examples, Sequence Prediction, Classification.

In the following we consider generic M and wν .
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Pareto-Optimality of pξ

Policy pξ is Pareto-optimal in the sense that there is no other policy p

with V p
ν ≥ V pξ

ν for all ν ∈M and strict inequality for at least one ν.

Self-optimizing Policies

Under which circumstances does the value of the universal policy pξ

converge to optimum?

V pξ

ν → V ∗
ν for horizon m →∞ for all ν ∈M. (1)

The least we must demand from M to have a chance that (1) is true is

that there exists some policy p̃ at all with this property, i.e.

∃p̃ : V p̃
ν → V ∗

ν for horizon m →∞ for all ν ∈M. (2)

Main result: (2) ⇒ (1): The necessary condition of the existence of a

self-optimizing policy p̃ is also sufficient for pξ to be self-optimizing.
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Environments w. (Non)Self-Optimizing Policies
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Particularly Interesting Environments

• Sequence Prediction, e.g. weather or stock-market prediction.

Strong result: V ∗
µ − V pξ

µ = O(
√

K(µ)
m ), m =horizon.

• Strategic Games: Learn to play well (minimax) strategic zero-sum

games (like chess) or even exploit limited capabilities of opponent.

• Optimization: Find (approximate) minimum of function with as few

function calls as possible. Difficult exploration versus exploitation

problem.

• Supervised learning: Learn functions by presenting (z, f(z)) pairs

and ask for function values of z′ by presenting (z′, ?) pairs.

Supervised learning is much faster than reinforcement learning.

AIξ quickly learns to predict, play games, optimize, and learn supervised.
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Universal Rational Agents: Summary

• Setup: Agents acting in general probabilistic environments with

reinforcement feedback.

• Assumptions: Unknown true environment µ belongs to a known

class of environments M.

• Results: The Bayes-optimal policy pξ based on the Bayes-mixture

ξ =
∑

ν∈M wνν is Pareto-optimal and self-optimizing if M admits

self-optimizing policies.

• We have reduced the AI problem to pure computational questions

(which are addressed in the time-bounded AIXItl).

• AIξ incorporates all aspects of intelligence (apart comp.-time).

• How to choose horizon: use future value and universal discounting.

• ToDo: prove (optimality) properties, scale down, implement.



Marcus Hutter - 78 - Universal Induction & Intelligence

Wrap Up

• Setup: Given (non)iid data D = (x1, ..., xn), predict xn+1

• Ultimate goal is to maximize profit or minimize loss

• Consider Models/Hypothesis Hi ∈M
• Max.Likelihood: Hbest = arg maxi p(D|Hi) (overfits if M large)

• Bayes: Posterior probability of Hi is p(Hi|D) ∝ p(D|Hi)p(Hi)

• Bayes needs prior(Hi)

• Occam+Epicurus: High prior for simple models.

• Kolmogorov/Solomonoff: Quantification of simplicity/complexity

• Bayes works if D is sampled from Htrue ∈M
• Universal AI = Universal Induction + Sequential Decision Theory
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Thanks! Questions? Details:

Jobs: PostDoc and PhD positions at RSISE and NICTA, Australia

Projects at http://www.hutter1.net/

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Open research problems at www.hutter1.net/ai/uaibook.htm

Compression competition with 50’000 Euro prize at prize.hutter1.net


