SoftRank
Optimising Non-Smooth Rank Metrics

Mike Taylor, John Guiver,
Steve Robertson and Tom Minka

Microsoft Research Cambridge
IR Metrics are Not Smooth: NDCG

- Document score $s = f(x, w)$
 - learn w from labelled training data
- Sort gives ranked list of documents
 - With labels $l \in \{0,1,2,3\}$
 - And gains $g(l) = 2^l$
- Normalized DCG:
 $$G = G_{\text{max}}^{-1} \sum_{r=0}^{N-1} g(l_r) D(r)$$
- $$\frac{\partial G}{\partial w}$$ non-smooth: generally zero, but...
 - Infinite as documents switch ranks
 - Makes gradient-based optimisation tricky
Previous Proxy Training Objectives

• Pointwise:
 – Regression on labels $G_{MSE} = (s - l)^2$
 – Ordinal regression

• Pairwise:
 – RankSvm
 – RankNet $G_{RNC} = \log(1 + e^{s_2 - s_1})$

• List based:
 – LambdaRank $\left| \frac{\partial G_{LR}}{\partial s_1} \right| \gg \left| \frac{\partial G_{LR}}{\partial s_2} \right|$
 – Yue (Structural SVM), Cao (ListNet)
SoftRank Approach

- Add noise to scores
- Infer rank distribution for each doc – no sort
- SoftNDCG is $E[NDCG]$ under rank distribution
- Derivatives of SoftNDCG are smooth
Rank Distribution

• Generative process for exact distribution:
 – Sample from each score Gaussian
 – Sort N samples to get rank for each doc
 – Accumulate ranks for each doc

• Doubly stochastic matrix R
 – Rank distribution given doc
 – Doc distribution given rank

• Need a good approximation with no sort
Pairwise Contest Approximation

• Assume scores are Gaussian
 – NN Ranking function gives means

• Pair-wise contest:

\[\pi_{ij} \equiv Pr(s_i - s_j > 0) = \int_0^\infty \mathcal{N}(s|\bar{s}_i - \bar{s}_j, 2\sigma^2) \, ds \]

• Expected Rank = num times beaten:

\[E[r_j] = \sum_{i=1, i \neq j}^N \pi_{ij} \quad \text{No sort so differentiable} \]

• Rank-Binomial : Sum \(N - 1 \) Bernoulli(\(\pi_{ij} \)) trials
Rank Distribution Recursion

\[\pi_{ij} \equiv \Pr(s_i > s_j) \]

\[p_j^1(r) = \delta(r) \]

\[p_j^2(0) = 1 - \pi_{1j} \]

\[p_j^2(1) = \pi_{1j} \]

\[p_j^3(1) = p_j^2(0)\pi_{2j} + p_j^{i-1}(1)(1 - \pi_{2j}) \]

Take home:

- Gives expressions for \(p_j(r) \) and \(\frac{\partial p_j(r)}{\partial \bar{s}} \) analytic in score means
Effect of Pairwise Contest Trick

- Rank-Binomial: no sort but an approximation
- Compare with exact distribution
- Qualitatively a good approximation
- Can improve with row/col normalizations
SoftNDCG

• NDCG: \[G = G_{\text{max}}^{-1} \sum_{j=1}^{N} g(l_j)D(r_j) \]

• SoftNDCG: \[\mathcal{G} = G_{\text{max}}^{-1} \sum_{j=1}^{N} g(l_j)E[D(r_j)] \]

• And so

\[\mathcal{G} = G_{\text{max}}^{-1} \sum_{j=1}^{N} g(l_j) \sum_{r=0}^{N-1} D(r_j)p_j(r) \]

Using \[\frac{\partial p_j(r)}{\partial \bar{s}} \] from rank recursion

From backprop

• Seek: \[\frac{\partial \mathcal{G}}{\partial w} = \frac{\partial \mathcal{G}}{\partial \bar{s}} \frac{\partial \bar{s}}{\partial w} \]
Experiments

• 2-layer neural net
 – Web: 300 features, Train 4K, Val/Test 2K each

• NDCG@10 used for validation/test

• Stochastic gradient descent with restarts
 – Quite sensitive to learning rate and smoothing σ
 – Set using validation set
SoftRank Results

• Better training set NDCG
 – Optimisation is better: approximations are good
• Web: Worse than LambdaRank on test set
 – Somehow not generalising
Generalization Study

- Are we somehow just overfitting?
 - Despite NDCG validation
 - Try much simpler linear model (3K → 300 parameters)

- Still worse on test set
 - and better training set
 - Regularising OK
Discount Study

• SoftRank focuses *too* much on top ranks?
 – Useful info in ordering at lower ranks
 – Effectively ignored by SoftRank
 – Try shallower discounts
Conclusions

• SoftRank optimises NDCG very well
• Can use Rank-Binomial to optimise other rank-based IR metrics
• SoftNDCG does not generalize well
 – Seems to focus too much on top ranks in training
 – Inefficient use of training data
 – Training objective should be different
• Can recover LambdaRank performance with less severe discount function