On a L_1-test statistic of homogeneity

G. Biau, B. Cadre, L. Devroye and L. Györfi

University Paris VI — ENS Cachan — McGill University — UTE Budapest

NIPS, Whistler, December 2007
Outline

1. A L_1-test statistic for the two sample problem

2. Application to density model selection
Outline

1. A L_1-test statistic for the two sample problem

2. Application to density model selection
The problem

- Two mutually independent samples

\[X_1, \ldots, X_n \quad \text{and} \quad X'_1, \ldots, X'_n \]

distributed according to unknown probability measures \(\mu \) and \(\mu' \) on \(\mathbb{R}^d \).

- We are interested in testing the null hypothesis that the two samples are homogeneous, that is

\[\mathcal{H}_0 : \mu = \mu'. \]

- Such tests have been extensively studied (for an overview, see Gretton, Borgwardt, Rasch, Schölkopf and Smola, 2006).
The problem

- **Two** mutually independent samples

\[X_1, \ldots, X_n \] and \[X'_1, \ldots, X'_n \]

distributed according to **unknown** probability measures \(\mu \) and \(\mu' \) on \(\mathbb{R}^d \).

- **We are interested in testing the null hypothesis** that the two samples are **homogeneous**, that is

\[\mathcal{H}_0 : \mu = \mu'. \]

- **Such tests have been extensively studied** (for an overview, see Gretton, Borgwardt, Rasch, Schölkopf and Smola, 2006).
The problem

- Two mutually independent samples

 \[X_1, \ldots, X_n \text{ and } X'_1, \ldots, X'_n \]

 distributed according to unknown probability measures \(\mu \) and \(\mu' \) on \(\mathbb{R}^d \).

- We are interested in testing the null hypothesis that the two samples are homogeneous, that is

 \[H_0 : \mu = \mu'. \]

- Such tests have been extensively studied (for an overview, see Gretton, Borgwardt, Rasch, Schölkopf and Smola, 2006).
The test statistic

- Based on a partition $\mathcal{P}_n = \{A_{n1}, \ldots, A_{nm_n}\}$ of \mathbb{R}^d, we let the test statistic be defined as

$$T_n = \sum_{j=1}^{m_n} |\mu_n(A_{nj}) - \mu_n'(A_{nj})|.$$

- Györfi and van der Meulen (1990) introduced a related goodness of fit test statistic L_n defined as

$$L_n = \sum_{j=1}^{m_n} |\mu_n(A_{nj}) - \mu(A_{nj})|.$$
The test statistic

Based on a partition $P_n = \{A_{n1}, \ldots, A_{nm_n}\}$ of \mathbb{R}^d, we let the test statistic be defined as

$$T_n = \sum_{j=1}^{m_n} |\mu_n(A_{nj}) - \mu'_n(A_{nj})|.$$

Györfi and van der Meulen (1990) introduced a related goodness of fit test statistic L_n defined as

$$L_n = \sum_{j=1}^{m_n} |\mu_n(A_{nj}) - \mu(A_{nj})|.$$
Asymptotic behavior of L_n

Theorem (Devroye and Györfi, 2002)

If

$$\lim_{n \to \infty} \frac{m_n}{n} = 0 \quad \text{and} \quad \lim_{n \to \infty} \max_{j=1, \ldots, m_n} \mu(A_{nj}) = 0,$$

then, for all $0 < \varepsilon < 2$,

$$\mathbb{P}\{L_n > \varepsilon\} = e^{-n(g_{L}(\varepsilon) + o(1))} \quad \text{as} \quad n \to \infty,$$

where

$$g_{L}(\varepsilon) = \inf_{0<p<1-\varepsilon/2} D(p \parallel p + \varepsilon/2),$$

and

$$D(\alpha \parallel \beta) = \alpha \ln \frac{\alpha}{\beta} + (1 - \alpha) \ln \frac{1 - \alpha}{1 - \beta}.$$
Asymptotic behavior of \(T_n \)

Theorem

Under \(\mathcal{H}_0, \) for all \(0 < \varepsilon < 2, \)

\[
P\{ T_n > \varepsilon \} = e^{-n(g_T(\varepsilon) + o(1))} \quad \text{as} \ n \to \infty,
\]

where

\[
g_T(\varepsilon) = \left(1 + \frac{\varepsilon}{2}\right) \ln\left(1 + \frac{\varepsilon}{2}\right) + \left(1 - \frac{\varepsilon}{2}\right) \ln\left(1 - \frac{\varepsilon}{2}\right).
\]

- As \(\varepsilon \downarrow 0, \) \(g_T(\varepsilon) \approx \varepsilon^2/4, \) whereas \(g_L(\varepsilon) \approx \varepsilon^2/2. \)
- In contrast to \(g_T(\varepsilon), \) the rate function \(g_L(\varepsilon) \) is unbounded as \(\varepsilon \uparrow 2. \)
- **Conclusion:** \(L_n \) and \(T_n \) have different large deviation properties.
Asymptotic behavior of T_n

Theorem

Under \mathcal{H}_0, for all $0 < \varepsilon < 2$,

$$
\mathbb{P}\{T_n > \varepsilon\} = e^{-n(g_T(\varepsilon) + o(1))} \quad \text{as } n \to \infty,
$$

where

$$
g_T(\varepsilon) = (1 + \varepsilon/2) \ln(1 + \varepsilon/2) + (1 - \varepsilon/2) \ln(1 - \varepsilon/2).
$$

- As $\varepsilon \downarrow 0$, $g_T(\varepsilon) \approx \varepsilon^2/4$, whereas $g_L(\varepsilon) \approx \varepsilon^2/2$.
- In contrast to $g_T(\varepsilon)$, the rate function $g_L(\varepsilon)$ is unbounded as $\varepsilon \uparrow 2$.
- **Conclusion:** L_n and T_n have different large deviation properties.
Asymptotic behavior of T_n

Theorem

Under H_0, for all $0 < \varepsilon < 2$,

$$
\mathbb{P}\{T_n > \varepsilon\} = e^{-n(g_T(\varepsilon) + o(1))} \quad \text{as } n \to \infty,
$$

where

$$
g_T(\varepsilon) = (1 + \varepsilon/2) \ln(1 + \varepsilon/2) + (1 - \varepsilon/2) \ln(1 - \varepsilon/2).
$$

- As $\varepsilon \downarrow 0$, $g_T(\varepsilon) \approx \varepsilon^2/4$, whereas $g_L(\varepsilon) \approx \varepsilon^2/2$.
- In contrast to $g_T(\varepsilon)$, the rate function $g_L(\varepsilon)$ is unbounded as $\varepsilon \uparrow 2$.
- **Conclusion:** L_n and T_n have different large deviation properties.
Asymptotic behavior of T_n

Theorem

Under \mathcal{H}_0, for all $0 < \varepsilon < 2$,

$$\mathbb{P}\{T_n > \varepsilon\} = e^{-n(g_T(\varepsilon) + o(1))} \text{ as } n \to \infty,$$

where

$$g_T(\varepsilon) = (1 + \varepsilon/2) \ln(1 + \varepsilon/2) + (1 - \varepsilon/2) \ln(1 - \varepsilon/2).$$

- As $\varepsilon \downarrow 0$, $g_T(\varepsilon) \approx \varepsilon^2/4$, whereas $g_L(\varepsilon) \approx \varepsilon^2/2$.
- In contrast to $g_T(\varepsilon)$, the rate function $g_L(\varepsilon)$ is unbounded as $\varepsilon \uparrow 2$.
- **Conclusion:** L_n and T_n have different large deviation properties.
Rate functions g_L and g_T

\[g_L(\varepsilon/2) \leq g_T(\varepsilon) \leq g_L(\varepsilon) \]
Sketch of proof

- **Generating function** of the sequence \((T_n)\):

 \[
 \lambda_T(s) = \lim_{n \to \infty} \frac{1}{n} \ln \mathbb{E}\{e^{snT_n}\}, \quad s > 0.
 \]

- By Scheffé’s theorem for partitions:

 \[
 T_n = \sum_{A \in \mathcal{P}_n} |\mu_n(A) - \mu'_n(A)| = 2 \max_{A \in \sigma(\mathcal{P}_n)} (\mu_n(A) - \mu'_n(A)).
 \]

- Thus,

 \[
 \mathbb{E}\{e^{snT_n}\} = \mathbb{E} \left\{ \max_{A \in \sigma(\mathcal{P}_n)} e^{2sn(\mu_n(A) - \mu'_n(A))} \right\}
 \leq 2^{m_n} \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{e^{2sn(\mu_n(A) - \mu'_n(A))}\}
 \]

 \[
 = 2^{m_n} \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{e^{2sn\mu_n(A)}\} \mathbb{E}\{e^{-2sn\mu'_n(A)}\}
 \]

 \[
 \leq 2^{m_n} \left[\frac{1}{2} + \left(e^{2s} + e^{-2s} \right)/4 \right]^n.
 \]
Sketch of proof

Generating function of the sequence \((T_n)\):

\[
\lambda_T(s) = \lim_{n \to \infty} \frac{1}{n} \ln \mathbb{E}\{e^{snT_n}\}, \quad s > 0.
\]

By **Scheffé’s theorem** for partitions:

\[
T_n = \sum_{A \in \mathcal{P}_n} |\mu_n(A) - \mu'_n(A)| = 2 \max_{A \in \sigma(\mathcal{P}_n)} (\mu_n(A) - \mu'_n(A)).
\]

Thus,

\[
\mathbb{E}\{e^{snT_n}\} = \mathbb{E}\left\{ \max_{A \in \sigma(\mathcal{P}_n)} e^{2sn(\mu_n(A) - \mu'_n(A))} \right\}
\leq 2^{mn} \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{e^{2sn(\mu_n(A) - \mu'_n(A))}\}
= 2^{mn} \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{e^{2sn\mu_n(A)}\} \mathbb{E}\{e^{-2sn\mu'_n(A)}\}
\leq 2^{mn} \left[1/2 + (e^{2s} + e^{-2s})/4 \right]^n.
\]
Sketch of proof

- Generating function of the sequence \((T_n)\):
 \[
 \lambda_T(s) = \lim_{n \to \infty} \frac{1}{n} \ln \mathbb{E}\{e^{snT_n}\}, \quad s > 0.
 \]

- By Scheffé’s theorem for partitions:
 \[
 T_n = \sum_{A \in \mathcal{P}_n} |\mu_n(A) - \mu'_n(A)| = 2 \max_{A \in \sigma(\mathcal{P}_n)} (\mu_n(A) - \mu'_n(A)).
 \]

- Thus,
 \[
 \mathbb{E}\{e^{snT_n}\} = \mathbb{E} \left\{ \max_{A \in \sigma(\mathcal{P}_n)} e^{2sn(\mu_n(A) - \mu'_n(A))} \right\}
 \leq 2^{mn} \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{e^{2sn(\mu_n(A) - \mu'_n(A))}\}
 = 2^{mn} \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{e^{2sn\mu_n(A)}\} \mathbb{E}\{e^{-2sn\mu'_n(A)}\}
 \leq 2^{mn} \left[1/2 + (e^{2s} + e^{-2s})/4 \right]^n.
 \]
Sketch of proof

This implies that

\[\lambda_T(s) \leq \ln(1/2 + (e^{2s} + e^{-2s})/4). \]

Similarly,

\[
\mathbb{E}\{e^{snT_n}\} = \mathbb{E}\{ \max_{A \in \sigma(\mathcal{P}_n)} e^{2sn(\mu_n(A) - \mu'_n(A))} \} \\
\geq \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{ e^{2sn(\mu_n(A) - \mu'_n(A))} \} \\
= \max_{A \in \sigma(\mathcal{P}_n)} \mathbb{E}\{ e^{2sn\mu_n(A)} \} \mathbb{E}\{ e^{-2sn\mu'_n(A)} \},
\]

which implies

\[\lambda_T(s) \geq \ln(1/2 + (e^{2s} + e^{-2s})/4). \]

Conclusion by Gärtner-Ellis theorem:

\[g_T(\varepsilon) = \max_{s>0} (s\varepsilon - \lambda_T(s)) . \]
Sketch of proof

This implies that

\[\lambda_T(s) \leq \ln(1/2 + (e^{2s} + e^{-2s})/4). \]

Similarly,

\[\mathbb{E}\{e^{snT_n}\} = \mathbb{E}\left\{ \max_{A \in \sigma(P_n)} e^{2sn(\mu_n(A) - \mu'_n(A))} \right\} \]

\[\geq \max_{A \in \sigma(P_n)} \mathbb{E}\{e^{2sn(\mu_n(A) - \mu'_n(A))}\} \]

\[= \max_{A \in \sigma(P_n)} \mathbb{E}\{e^{2sn\mu_n(A)}\} \mathbb{E}\{e^{-2sn\mu'_n(A)}\}, \]

which implies

\[\lambda_T(s) \geq \ln(1/2 + (e^{2s} + e^{-2s})/4). \]

Conclusion by Gärtner-Ellis theorem:

\[g_T(\varepsilon) = \max_{s > 0} (s\varepsilon - \lambda_T(s)). \]
Sketch of proof

This implies that

$$\lambda_T(s) \leq \ln(1/2 + (e^{2s} + e^{-2s})/4).$$

Similarly,

$$\mathbb{E}\{e^{snT_n}\} = \mathbb{E}\left\{ \max_{A \in \sigma(P_n)} e^{2sn(\mu_n(A) - \mu'_n(A))} \right\}$$

$$\geq \max_{A \in \sigma(P_n)} \mathbb{E}\{e^{2sn(\mu_n(A) - \mu'_n(A))}\}$$

$$= \max_{A \in \sigma(P_n)} \mathbb{E}\{e^{2sn\mu_n(A)}\}\mathbb{E}\{e^{-2sn\mu'_n(A)}\},$$

which implies

$$\lambda_T(s) \geq \ln(1/2 + (e^{2s} + e^{-2s})/4).$$

Conclusion by Gärtner-Ellis theorem:

$$g_T(\varepsilon) = \max_{s > 0} (s\varepsilon - \lambda_T(s)).$$
Sketch of proof

- This implies that
 \[\lambda_T(s) \leq \ln(1/2 + (\text{e}^{2s} + \text{e}^{-2s})/4). \]

- Similarly,
 \[
 \mathbb{E}\{ e^{snT_n} \} = \mathbb{E}\{ \max_{A \in \sigma(P_n)} e^{2sn(\mu_n(A) - \mu'_n(A))} \}
 \geq \max_{A \in \sigma(P_n)} \mathbb{E}\{ e^{2sn(\mu_n(A) - \mu'_n(A))} \}
 = \max_{A \in \sigma(P_n)} \mathbb{E}\{ e^{2sn\mu_n(A)} \} \mathbb{E}\{ e^{-2sn\mu'_n(A)} \},
 \]

 which implies
 \[\lambda_T(s) \geq \ln(1/2 + (\text{e}^{2s} + \text{e}^{-2s})/4). \]

- Conclusion by Gärtner-Ellis theorem:
 \[g_T(\varepsilon) = \max_{s > 0} (s\varepsilon - \lambda_T(s)). \]
This technique yields a distribution-free strong consistent test of homogeneity, which rejects the null hypothesis if T_n becomes large.

It means that both on \mathcal{H}_0 and on its complement the test makes a.s. no error after a random sample size.

In other words, we have

$$\mathbb{P}_0\{\text{rejecting } \mathcal{H}_0 \text{ for only finitely many } n\} = 1$$

and

$$\mathbb{P}_1\{\text{accepting } \mathcal{H}_0 \text{ for only finitely many } n\} = 1.$$
This technique yields a distribution-free strong consistent test of homogeneity, which rejects the null hypothesis if T_n becomes large.

It means that both on \mathcal{H}_0 and on its complement the test makes a.s. no error after a random sample size.

In other words, we have

$$\mathbb{P}_0\{\text{rejecting } \mathcal{H}_0 \text{ for only finitely many } n\} = 1$$

and

$$\mathbb{P}_1\{\text{accepting } \mathcal{H}_0 \text{ for only finitely many } n\} = 1.$$
This technique yields a **distribution-free strong consistent test of homogeneity**, which rejects the null hypothesis if T_n becomes large.

It means that both on H_0 and on its complement the test makes a.s. no error after a random sample size.

In other words, we have

$$P_0\{\text{rejecting } H_0 \text{ for only finitely many } n\} = 1$$

and

$$P_1\{\text{accepting } H_0 \text{ for only finitely many } n\} = 1.$$
A strong consistent test

Corollary

Consider the test which rejects \(\mathcal{H}_0 \) when

\[
T_n > c_1 \sqrt{\frac{m_n}{n}},
\]

where \(c_1 > 2\sqrt{\ln 2} \approx 1.6651 \). Assume that

\[
\lim_{n \to \infty} \frac{m_n}{n} = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{m_n}{\ln n} = \infty.
\]

Then, under \(\mathcal{H}_0 \), after a random sample size the test makes a.s. no error. Moreover, if \(\mu \neq \mu' \), and for any sphere \(S \) centered at the origin

\[
\lim_{n \to \infty} \max_{A_{nj} \cap S \neq 0} \text{diam}(A_{nj}) = 0,
\]

then after a random sample size the test makes a.s. no error.
Beirlant, Györfi and Lugosi (1994) proved that

\[\sqrt{n} (L_n - \mathbb{E}\{L_n\}) / \sigma \xrightarrow{D} \mathcal{N}(0, 1), \]

where \(\sigma^2 = 1 - 2/\pi \).

Their technique involves a Poisson representation of the empirical process in conjunction with Bartlett’s (1938) idea of partial inversion for obtaining characteristic functions of conditional distributions.
Beirlant, Györfi and Lugosi (1994) proved that
\[\sqrt{n}(L_n - \mathbb{E}\{L_n\}) / \sigma \xrightarrow{D} \mathcal{N}(0, 1), \]
where \(\sigma^2 = 1 - 2/\pi \).

Their technique involves a Poisson representation of the empirical process in conjunction with Bartlett’s (1938) idea of partial inversion for obtaining characteristic functions of conditional distributions.
Asymptotic normality

Theorem

If

\[
\lim_{n \to \infty} \frac{m_n}{n} = 0 \quad \text{and} \quad \lim_{n \to \infty} \max_{j=1,\ldots,m_n} \mu(A_{nj}) = 0,
\]

then, under \mathcal{H}_0, with a centering sequence (C_n),

\[
\sqrt{n}(T_n - C_n) / \sigma \xrightarrow{D} \mathcal{N}(0, 1),
\]

where $\sigma^2 = 2(1 - 2/\pi)$.

G. Biau (Université Paris VI)
Sketch of proof

- **Difficulty:** T_n is a sum of dependent random variables.
- To overcome this problem, we use a ‘Poissonization’ argument.
- Denote by N_n and N'_n two independent Poisson (n) random variables independent of $(X_i)_{i \geq 1}$ and $(X'_i)_{i \geq 1}$.
- The Poissonized version \tilde{T}_n of T_n is then defined by

$$\tilde{T}_n = \sum_{j=1}^{m_n} |\mu_{N_n}(A_{nj}) - \mu'_{N'_n}(A_{nj})|,$$

where, for any Borel subset A,

$$\mu_{N_n}(A) = \frac{\# \{i : X_i \in A, i = 1, \ldots, N_n \}}{n},$$

and, similarly,

$$\mu'_{N'_n}(A) = \frac{\# \{i : X'_i \in A, i = 1, \ldots, N'_n \}}{n}.$$
Sketch of proof

Difficulty: T_n is a sum of dependent random variables.

To overcome this problem, we use a ‘Poissonization’ argument.

Denote by N_n and N'_n two independent Poisson (n) random variables independent of $(X_i)_{i \geq 1}$ and $(X'_i)_{i \geq 1}$.

The Poissonized version \tilde{T}_n of T_n is then defined by

$$\tilde{T}_n = \sum_{j=1}^{m_n} |\mu_{N_n}(A_{nj}) - \mu'_{N'_n}(A_{nj})|,$$

where, for any Borel subset A,

$$\mu_{N_n}(A) = \frac{\# \{ i : X_i \in A, i = 1, \ldots, N_n \}}{n},$$

and, similarly,

$$\mu'_{N'_n}(A) = \frac{\# \{ i : X'_i \in A, i = 1, \ldots, N'_n \}}{n}.$$
Sketch of proof

- **Difficulty**: T_n is a sum of dependent random variables.
- To overcome this problem, we use a ‘Poissonization’ argument.
- Denote by N_n and N'_n two independent Poisson (n) random variables independent of $(X_i)_{i \geq 1}$ and $(X'_i)_{i \geq 1}$.
- The Poissonized version \tilde{T}_n of T_n is then defined by

$$\tilde{T}_n = \sum_{j=1}^{m_n} |\mu_{N_n}(A_{nj}) - \mu'_{N'_n}(A_{nj})|,$$

where, for any Borel subset A,

$$\mu_{N_n}(A) = \frac{\# \{ i : X_i \in A, i = 1, \ldots, N_n \}}{n},$$

and, similarly,

$$\mu'_{N'_n}(A) = \frac{\# \{ i : X'_i \in A, i = 1, \ldots, N'_n \}}{n}.$$
Sketch of proof

- **Difficulty:** T_n is a sum of dependent random variables.
- To overcome this problem, we use a ‘Poissonization’ argument.
- Denote by N_n and N'_n two independent Poisson (n) random variables independent of $(X_i)_{i \geq 1}$ and $(X'_i)_{i \geq 1}$.
- The Poissonized version \tilde{T}_n of T_n is then defined by

$$\tilde{T}_n = \sum_{j=1}^{m_n} |\mu_{N_n}(A_{nj}) - \mu'_{N'_n}(A_{nj})|,$$

where, for any Borel subset A,

$$\mu_{N_n}(A) = \frac{\#\{i : X_i \in A, i = 1, \ldots, N_n\}}{n},$$

and, similarly,

$$\mu'_{N'_n}(A) = \frac{\#\{i : X'_i \in A, i = 1, \ldots, N'_n\}}{n}.$$
Sketch of proof

Setting

\[Y_n = (n\mu_{N_n}(A_{n1}), \ldots, n\mu_{N_n}(A_{nm_n})) \]

and

\[Y'_n = (n\mu'_{N'_n}(A_{n1}), \ldots, n\mu'_{N'_n}(A_{nm_n})) , \]

one shows that \(Y_n \) and \(Y'_n \) are independent vectors of independent random variables with

\[(n\mu_{N_n}(A_{nj})) \overset{D}{=} (n\mu'_{N'_n}(A_{nj})) \overset{D}{=} \text{Poisson} \left(n\mu(A_{nj}) \right) . \]

Moreover,

\[(Y_n|N_n = n) \overset{D}{=} (Y'_n|N'_n = n) \overset{D}{=} \text{Multinomial} \left(n; \mu(A_{n1}), \ldots, \mu(A_{nm_n}) \right) . \]

The key of the proof is the following property, which uses Fourier’s inversion formula.
Sketch of proof

- Setting

\[Y_n = (n\mu_{N_n}(A_{n1}), \ldots, n\mu_{N_n}(A_{nm_n})) \]

and

\[Y'_n = (n\mu'_{N'_n}(A_{n1}), \ldots, n\mu'_{N'_n}(A_{nm_n})) \],

one shows that \(Y_n \) and \(Y'_n \) are independent vectors of independent random variables with

\[\left(n\mu_{N_n}(A_{nj}) \right) \overset{\mathcal{D}}{=} \left(n\mu'_{N'_n}(A_{nj}) \right) \overset{\mathcal{D}}{=} \text{Poisson} \left(n\mu(A_{nj}) \right). \]

- Moreover,

\[(Y_n|N_n = n) \overset{\mathcal{D}}{=} (Y'_n|N'_n = n) \overset{\mathcal{D}}{=} \text{Multinomial} \left(n; \mu(A_{n1}), \ldots, \mu(A_{nm_n}) \right). \]

- The key of the proof is the following property, which uses Fourier’s inversion formula.
Sketch of proof

- Setting

\[Y_n = (n\mu_{N_n}(A_{n1}), \ldots, n\mu_{N_n}(A_{nm_n})) \]

and

\[Y'_n = (n\mu'_{N'_n}(A_{n1}), \ldots, n\mu'_{N'_n}(A_{nm_n})) \],

one shows that \(Y_n \) and \(Y'_n \) are independent vectors of independent random variables with

\[(n\mu_{N_n}(A_{nj})) \overset{\mathcal{D}}{=} (n\mu'_{N'_n}(A_{nj})) \overset{\mathcal{D}}{=} \text{Poisson} \left(n\mu(A_{nj}) \right) . \]

- Moreover,

\[(Y_n|N_n = n) \overset{\mathcal{D}}{=} (Y'_n|N'_n = n) \overset{\mathcal{D}}{=} \text{Multinomial} \left(n; \mu(A_{n1}), \ldots, \mu(A_{nm_n}) \right) . \]

- The key of the proof is the following property, which uses Fourier's inversion formula.
Proposition

Let \(g_{nj} (j = 1, \ldots, m_n) \) be real measurable functions, with

\[
\mathbb{E} \left\{ g_{nj} \left(\mu_{N_n}(A_{nj}) - \mu'_{N'_n}(A_{nj}) \right) \right\} = 0,
\]

and let

\[
M_n = \sum_{j=1}^{m_n} g_{nj} \left(\mu_{N_n}(A_{nj}) - \mu'_{N'_n}(A_{nj}) \right).
\]

Assume that

\[
\left(M_n, \frac{N_n - n}{\sqrt{n}}, \frac{N'_n - n}{\sqrt{n}} \right) \overset{D}{\to} \mathcal{N}_3(0, 0, 0, \sigma^2, 1, 1),
\]

as \(n \to \infty \), where \(\sigma \) is a positive constant. Then

\[
\frac{1}{\sigma} \sum_{j=1}^{m_n} g_{nj} \left(\mu_n(A_{nj}) - \mu'_n(A_{nj}) \right) \overset{D}{\to} \mathcal{N}(0, 1).
\]
Corollary

Put $\alpha \in (0, 1)$, $C^* = 0.7655$, and consider the test which rejects \mathcal{H}_0 when

$$T_n > c_2 \sqrt{\frac{m_n}{n}} + C^* \frac{m_n}{n} + \frac{\sigma}{\sqrt{n}} \Phi^{-1}(1 - \alpha),$$

where $c_2 = 2/\sqrt{\pi} \approx 1.1284$. Then the test has asymptotic significance level α. Moreover, under the additional condition

$$\lim_{n \to \infty} \max_{A_{nj} \cap S \neq 0} \text{diam}(A_{nj}) = 0,$$

the test is consistent.
1 A L_1-test statistic for the two sample problem

2 Application to density model selection
We wish to estimate a density f on \mathbb{R}^d that belongs to a parametric family, \mathcal{F}_k, where k is unknown, but $\mathcal{F}_k \subset \mathcal{F}_{k+1}$ for all k.

$$\mathcal{F} = \bigcup_{k \geq 1} \mathcal{F}_k.$$

Formally, we let the complexity associated with f be defined as

$$k^* = \min\{k \geq 1 : f \in \mathcal{F}_k\}.$$
The problem

- We wish to estimate a density f on \mathbb{R}^d that belongs to a \textit{parametric family}, \mathcal{F}_k, where k is unknown, but $\mathcal{F}_k \subset \mathcal{F}_{k+1}$ for all k.

$$\mathcal{F} = \bigcup_{k \geq 1} \mathcal{F}_k.$$

- Formally, we let the \textit{complexity} associated with f be defined as

$$k^* = \min\{k \geq 1 : f \in \mathcal{F}_k\}.$$
Objective

We wish to pick a density estimate \hat{f}_{K_n} in \mathcal{F} with

(i) $K_n \to k^*$ almost surely

(ii) and

$$\mathbb{E} \left\{ \int |\hat{f}_{K_n} - f| \right\} = O \left(\frac{1}{\sqrt{n}} \right).$$

K_n is obtained by minimizing the L_1 error between candidate models and the empirical measure.

The model parameters are selected using the general combinatorial tools developed in Devroye and Lugosi (2001).
Objective

We wish to pick a density estimate \hat{f}_{K_n} in \mathcal{F} with

(i) $K_n \to k^*$ almost surely

(ii) and

$$\mathbb{E} \left\{ \int |\hat{f}_{K_n} - f| \right\} = O \left(\frac{1}{\sqrt{n}} \right).$$

K_n is obtained by minimizing the L_1 error between candidate models and the empirical measure.

The model parameters are selected using the general combinatorial tools developed in Devroye and Lugosi (2001).
Objective

- We wish to pick a density estimate \(\hat{f}_{K_n} \) in \(\mathcal{F} \) with

 (i) \(K_n \to k^* \) almost surely

 (ii) and

 \[
 \mathbb{E} \left\{ \int |\hat{f}_{K_n} - f| \right\} = O \left(\frac{1}{\sqrt{n}} \right).
 \]

- \(K_n \) is obtained by minimizing the \(L_1 \) error between candidate models and the empirical measure.

- The model parameters are selected using the general combinatorial tools developed in Devroye and Lugosi (2001).
Objective

- We wish to pick a density estimate \hat{f}_{K_n} in F with

 (i) $K_n \to k^*$ almost surely

 (ii) and

 $$
 \mathbb{E} \left\{ \int |\hat{f}_{K_n} - f| \right\} = O \left(\frac{1}{\sqrt{n}} \right).
 $$

- K_n is obtained by minimizing the L_1 error between candidate models and the empirical measure.

- The model parameters are selected using the general combinatorial tools developed in Devroye and Lugosi (2001).
Examples I

Mixture classes. Consider first the classes \mathcal{F}_k of all mixtures of k normal densities over \mathbb{R}^d,

$$f_k(x) = \sum_{i=1}^{k} \frac{p_i}{\sqrt{(2\pi)^d \det(\Sigma_i)}} \ e^{-\frac{1}{2}(x-m_i)^T \Sigma_i^{-1}(x-m_i)}.$$

→ **Bayesian literature**: Hurn, Justel and Robert (2003).
→ **Statistical learning literature**: Figueiredo and Jain (2002).
→ **Clustering literature**: Fukumizu (2002).
→ **Statistical literature**: Dacunha–Castelle and Gassiat (1997).
Mixture classes. Consider first the classes \mathcal{F}_k of all mixtures of k normal densities over \mathbb{R}^d,

$$f_k(x) = \sum_{i=1}^{k} \frac{p_i}{\sqrt{(2\pi)^d \det(\Sigma_i)}} e^{-\frac{1}{2}(x-m_i)^T \Sigma_i^{-1} (x-m_i)}.$$

→ **Bayesian literature**: Hurn, Justel and Robert (2003).
→ **Statistical learning literature**: Figueiredo and Jain (2002).
→ **Clustering literature**: Fukumizu (2002).
→ **Statistical literature**: Dacunha-Castelle and Gassiat (1997).
Mixture classes. Consider first the classes \mathcal{F}_k of all mixtures of k normal densities over \mathbb{R}^d,

$$f_k(x) = \sum_{i=1}^{k} \frac{p_i}{\sqrt{(2\pi)^d \det(\Sigma_i)}} e^{-\frac{1}{2}(x-m_i)^T\Sigma_i^{-1}(x-m_i)}.$$

→ **Bayesian literature**: Hurn, Justel and Robert (2003).
→ **Statistical learning literature**: Figueiredo and Jain (2002).
→ **Clustering literature**: Fukumizu (2002).
→ **Statistical literature**: Dacunha-Castelle and Gassiat (1997).
Mixture classes. Consider first the classes \mathcal{F}_k of all mixtures of k normal densities over \mathbb{R}^d,

$$f_k(x) = \sum_{i=1}^{k} \frac{p_i}{\sqrt{(2\pi)^d \det(\Sigma_i)}} e^{-\frac{1}{2}(x-m_i)^T \Sigma_i^{-1}(x-m_i)}.$$

→ Clustering literature: Fukumizu (2002).
Mixture classes. Consider first the classes \mathcal{F}_k of all mixtures of k normal densities over \mathbb{R}^d,

$$f_k(x) = \sum_{i=1}^{k} \frac{p_i}{\sqrt{(2\pi)^d \det(\Sigma_i)}} \ e^{-\frac{1}{2}(x-m_i)^T \Sigma_i^{-1}(x-m_i)}.$$

→ **Bayesian literature:** Hurn, Justel and Robert (2003).
→ **Statistical learning literature:** Figueiredo and Jain (2002).
→ **Clustering literature:** Fukumizu (2002).
→ **Statistical literature:** Dacunha-Castelle and Gassiat (1997).
Increasing exponential families. Each density f_k in an exponential family \mathcal{F}_k may be written in the form

$$f_k(x) = c\alpha(\theta)\beta(x)e^{\sum_{i=1}^{k} \pi_i(\theta)\psi_i(x)}.$$

Examples of exponential families include classes of Gaussian, gamma, beta, Rayleigh, and Maxwell densities.

Other models are feasible: series estimates, neural network estimates, wavelets...

We require that the Vapnik-Chervonenkis dimension of \mathcal{F}_k^* is finite.
Increasing exponential families. Each density f_k in an exponential family F_k may be written in the form

$$f_k(x) = c \alpha(\theta) \beta(x) e^{\sum_{i=1}^{k} \pi_i(\theta) \psi_i(x)}.$$

Examples of exponential families include classes of Gaussian, gamma, beta, Rayleigh, and Maxwell densities.

Other models are feasible: series estimates, neural network estimates, wavelets...

We require that the Vapnik-Chervonenkis dimension of F_k is finite.
Examples II

- **Increasing exponential families.** Each density f_k in an exponential family \mathcal{F}_k may be written in the form

 $$f_k(x) = c \alpha(\theta) \beta(x) e^{\sum_{i=1}^{k} \pi_i(\theta) \psi_i(x)}.$$

- Examples of exponential families include classes of Gaussian, gamma, beta, Rayleigh, and Maxwell densities.

- Other models are feasible: series estimates, neural network estimates, wavelets...

- We require that the Vapnik-Chervonenkis dimension of \mathcal{F}_{k^*} is finite.
Increasing exponential families. Each density f_k in an exponential family \mathcal{F}_k may be written in the form

$$f_k(x) = c\alpha(\theta)\beta(x)e^{\sum_{i=1}^{k} \pi_i(\theta)\psi_i(x)}.$$

Examples of exponential families include classes of Gaussian, gamma, beta, Rayleigh, and Maxwell densities.

Other models are feasible: series estimates, neural network estimates, wavelets...

We require that the Vapnik-Chervonenkis dimension of \mathcal{F}_k^* is finite.
A closure condition

- Let \mathcal{D} be the class of all density functions on \mathbb{R}^d and $\hat{\mathcal{D}}$ the set of Fourier transforms \hat{g}.

Assumption

The set \hat{F}_k is closed in $\hat{\mathcal{D}}$.

- By Paul Lévy’s theorem, this is equivalent to require that for any sequence (g_n) in F_k satisfying

$$\lim_{n \to \infty} \int g_n(x)\varphi(x) \, dx = \int g(x)\varphi(x) \, dx$$

for every bounded, continuous real function φ, one has in fact $g \in F_k$.

G. Biau (Université Paris VI)
A closure condition

- Let \mathcal{D} be the class of all density functions on \mathbb{R}^d and $\hat{\mathcal{D}}$ the set of Fourier transforms \hat{g}.

Assumption

The set \hat{F}_k is closed in $\hat{\mathcal{D}}$.

- By Paul Lévy's theorem, this is equivalent to require that for any sequence (g_n) in F_k satisfying

$$\lim_{n \to \infty} \int g_n(x) \varphi(x) \, dx = \int g(x) \varphi(x) \, dx$$

for every bounded, continuous real function φ, one has in fact $g \in F_k$.
A closure condition

- Let \mathcal{D} be the class of all density functions on \mathbb{R}^d and $\hat{\mathcal{D}}$ the set of Fourier transforms \hat{g}.

Assumption

The set $\hat{\mathcal{F}}_k$ is closed in $\hat{\mathcal{D}}$.

- By Paul Lévy’s theorem, this is equivalent to require that for any sequence (g_n) in \mathcal{F}_k satisfying

\[
\lim_{n \to \infty} \int g_n(x) \varphi(x) \, dx = \int g(x) \varphi(x) \, dx
\]

for every bounded, continuous real function φ, one has in fact $g \in \mathcal{F}_k$.
Split the sample into two subsamples:
\[\{ X_1, \ldots, X_n \} \text{ and } \{ X'_1, \ldots, X'_n \} = \{ X_{n+1}, \ldots, X_{2n} \}. \]

Let \(P_n = \{ A_{nj} : j \geq 1 \} \) be a cubic partition of \(\mathbb{R}^d \) with volume \(h_n^d \).

Introduce the statistic
\[
d_{n,k} = \inf_{g \in F_k} \sum_{A \in P_n} \left| \int_A g - \mu_{2n}(A) \right|. \]

Let the threshold be
\[
T_n = \sum_{A \in P_n} |\mu_n(A) - \mu'_n(A)|. \]

Estimate of \(k^* \):
\[
K_n = \min\{ k \geq 1 : d_{n,k} \leq T_n \}. \]
Complexity estimation

- Split the sample into two subsamples:
 \[
 \{X_1, \ldots, X_n\} \quad \text{and} \quad \{X'_1, \ldots, X'_n\} = \{X_{n+1}, \ldots, X_{2n}\}.
 \]

- Let \(P_n = \{A_{nj} : j \geq 1\} \) be a cubic partition of \(\mathbb{R}^d \) with volume \(h^d_n \).
- Introduce the statistic
 \[
 d_{n,k} = \inf_{g \in \mathcal{F}_k} \sum_{A \in P_n} \left| \int_A g - \mu_{2n}(A) \right|.
 \]

- Let the threshold be
 \[
 T_n = \sum_{A \in P_n} |\mu_n(A) - \mu'_n(A)|.
 \]

- Estimate of \(k^* \):
 \[
 K_n = \min\{k \geq 1 : d_{n,k} \leq T_n\}.
 \]
Complexity estimation

- Split the sample into **two subsamples**:
 \[
 \{X_1, \ldots, X_n\} \quad \text{and} \quad \{X'_1, \ldots, X'_n\} = \{X_{n+1}, \ldots, X_{2n}\}.
 \]

- Let \(\mathcal{P}_n = \{A_{nj} : j \geq 1\}\) be a cubic partition of \(\mathbb{R}^d\) with volume \(h_n^d\).
- Introduce the statistic
 \[
 d_{n,k} = \inf_{g \in \mathcal{F}_k} \sum_{A \in \mathcal{P}_n} \left| \int_A g - \mu_{2n}(A) \right|.
 \]

- Let the **threshold** be
 \[
 T_n = \sum_{A \in \mathcal{P}_n} |\mu_n(A) - \mu'_n(A)|.
 \]

- **Estimate of \(k^*\):**
 \[
 K_n = \min\{k \geq 1 : d_{n,k} \leq T_n\}.
 \]
Complexity estimation

- Split the sample into two subsamples:
 \[
 \{X_1, \ldots, X_n\} \quad \text{and} \quad \{X'_1, \ldots, X'_n\} = \{X_{n+1}, \ldots, X_{2n}\}.
 \]

- Let \(\mathcal{P}_n = \{A_{nj} : j \geq 1\} \) be a cubic partition of \(\mathbb{R}^d \) with volume \(h_n^d \).
- Introduce the statistic
 \[
 d_{n,k} = \inf_{g \in \mathcal{F}_k} \sum_{A \in \mathcal{P}_n} \left| \int_A g - \mu_{2n}(A) \right|.
 \]

- Let the threshold be
 \[
 T_n = \sum_{A \in \mathcal{P}_n} |\mu_n(A) - \mu'_n(A)|.
 \]

- Estimate of \(k^* \):
 \[
 K_n = \min\{k \geq 1 : d_{n,k} \leq T_n\}.
 \]
Split the sample into two subsamples:
\[\{X_1, \ldots, X_n\} \quad \text{and} \quad \{X'_1, \ldots, X'_n\} = \{X_{n+1}, \ldots, X_{2n}\}. \]

Let \(P_n = \{A_{nj} : j \geq 1\} \) be a cubic partition of \(\mathbb{R}^d \) with volume \(h_n^d \).

Introduce the statistic
\[
d_{n,k} = \inf_{g \in \mathcal{F}_k} \sum_{A \in P_n} \left| \int_A g - \mu_{2n}(A) \right|.\]

Let the threshold be
\[
T_n = \sum_{A \in P_n} |\mu_n(A) - \mu'_n(A)|.
\]

Estimate of \(k^* \):
\[
K_n = \min\{k \geq 1 : d_{n,k} \leq T_n\}.
\]
Complexity estimation

- Our estimate of k^*:

\[K_n = \min\{k \geq 1 : d_{n,k} \leq T_n\}. \]

Theorem

Choose $h_n = n^{-\delta}$ with $0 < \delta < 1/d$. Then there exists a positive constant κ, depending on f, such that

\[\mathbb{P}\{K_n \neq k^*\} \leq \exp\left(-\kappa n^{d\delta}\right), \]

and consequently, almost surely,

\[K_n = k^* \]

for all n large enough.
Our estimate of k^*:

$$K_n = \min\{k \geq 1 : d_{n,k} \leq T_n\}.$$

Theorem

Choose $h_n = n^{-\delta}$ with $0 < \delta < 1/d$. Then there exists a positive constant κ, depending on f, such that

$$\mathbb{P}\{K_n \neq k^*\} \leq \exp\left(-\kappa n^{d\delta}\right),$$

and consequently, almost surely,

$$K_n = k^*$$

for all n large enough.
Fast density estimate

- Fix $k \geq 1$ and introduce the class of sets

 $A_k = \{ \{ x : g_1(x) > g_2(x) \} : g_1, g_2 \in \mathcal{F}_k \}$

 and the goodness criterion for a density $g \in \mathcal{F}_k$:

 $$\Delta_k(g) = \sup_{A \in A_k} \left| \int_A g - \mu_{2n}(A) \right|.$$

- The minimum distance estimate \hat{f}_k minimizes the criterion $\Delta_k(g)$ over all g in \mathcal{F}_k.
Fix $k \geq 1$ and introduce the class of sets

$$A_k = \left\{ \{ x : g_1(x) > g_2(x) \} : g_1, g_2 \in \mathcal{F}_k \right\}$$

and the goodness criterion for a density $g \in \mathcal{F}_k$:

$$\Delta_k(g) = \sup_{A \in \mathcal{A}_k} \left| \int_A g - \mu_{2n}(A) \right|.$$

The minimum distance estimate \hat{f}_k minimizes the criterion $\Delta_k(g)$ over all g in \mathcal{F}_k.
Fast density estimate

For the elected minimum distance estimate \hat{f}_k, we have [Devroye and Lugosi (2001)]

$$\int |\hat{f}_k - f| \leq 3 \inf_{g \in \mathcal{F}_k} \int |g - f| + 4\Delta_k(f) + \frac{3}{2n}.$$

The minimum distance estimate \hat{f}_{Kn} is a natural candidate for the estimation of f.

We deduce that

$$\mathbb{E}\left\{ \int |\hat{f}_{Kn} - f| \right\} \leq 4\mathbb{E}\{\Delta_k^*(f)\} + \frac{3}{2n} + 2\exp\left(-\kappa n^{d\delta}\right),$$

where $\Delta_k^*(f) = \sup_{A \in \mathcal{A}_k^*} \left| \int_A f - \mu_{2n}(A) \right|$.

G. Biau (Université Paris VI)
Fast density estimate

- For the elected minimum distance estimate \hat{f}_k, we have [Devroye and Lugosi (2001)]

$$\int |\hat{f}_k - f| \leq 3 \inf_{g \in \mathcal{F}_k} \int |g - f| + 4\Delta_k(f) + \frac{3}{2n}.$$

- The minimum distance estimate \hat{f}_{Kn} is a natural candidate for the estimation of f.

- We deduce that

$$\mathbb{E}\left\{ \int |\hat{f}_{Kn} - f| \right\} \leq 4\mathbb{E}\{\Delta_k^*(f)\} + \frac{3}{2n} + 2 \exp\left(-\kappa n^{d_\delta}\right),$$

where $\Delta_k^*(f) = \sup_{A \in \mathcal{A}_k^*} \left| \int_A f - \mu_{2n}(A) \right|$.
For the elected minimum distance estimate \(\hat{f}_k \), we have \cite{Devroye:2001}

\[
\int |\hat{f}_k - f| \leq 3 \inf_{g \in \mathcal{F}_k} \int |g - f| + 4\Delta_k(f) + \frac{3}{2n}.
\]

The minimum distance estimate \(\hat{f}_{Kn} \) is a natural candidate for the estimation of \(f \).

We deduce that

\[
\mathbb{E}\left\{ \int |\hat{f}_{Kn} - f| \right\} \leq 4\mathbb{E}\{\Delta_k^*(f)\} + \frac{3}{2n} + 2 \exp\left(-\kappa n^{d\delta}\right),
\]

where \(\Delta_k^*(f) = \sup_{A \in \mathcal{A}_k^*} \left| \int_A f - \mu_{2n}(A) \right| \).
Link with the VC theory

- If A_{k^*} has Vapnik-Chervonenkis dimension V_{k^*}, then

$$
\mathbb{E} \{ \Delta_{k^*}(f) \} \leq C \sqrt{\frac{V_{k^*}}{n}}.
$$

- Consequently,

$$
\mathbb{E} \left\{ \int |\hat{f}_{Kn} - f| \right\} \leq 4C \sqrt{\frac{V_{k^*}}{n}} + \frac{3}{2n} + 14 \exp \left(-\kappa n^{d\delta} \right).
$$

- In particular,

$$
\mathbb{E} \left\{ \int |\hat{f}_{Kn} - f| \right\} = O \left(\frac{1}{\sqrt{n}} \right).
$$
Link with the VC theory

- If A_{k^*} has Vapnik-Chervonenkis dimension V_{k^*}, then

$$
\mathbb{E}\{\Delta_{k^*}(f)\} \leq C\sqrt{\frac{V_{k^*}}{n}}.
$$

- Consequently,

$$
\mathbb{E}\left\{ \int |\hat{f}_{Kn} - f| \right\} \leq 4C\sqrt{\frac{V_{k^*}}{n}} + \frac{3}{2n} + 14 \exp\left(-\kappa n^{d\delta}\right).
$$

- In particular,

$$
\mathbb{E}\left\{ \int |\hat{f}_{Kn} - f| \right\} = O\left(\frac{1}{\sqrt{n}}\right).
$$
Link with the VC theory

- If \(\mathcal{A}_{k^*} \) has Vapnik-Chervonenkis dimension \(V_{k^*} \), then

\[
\mathbb{E}\{ \Delta_{k^*}(f) \} \leq C \sqrt{\frac{V_{k^*}}{n}}.
\]

- Consequently,

\[
\mathbb{E}\left\{ \int |\hat{f}_{Kn} - f| \right\} \leq 4C \sqrt{\frac{V_{k^*}}{n}} + \frac{3}{2n} + 14 \exp \left(-\kappa n^{d*} \right).
\]

- In particular,

\[
\mathbb{E}\left\{ \int |\hat{f}_{Kn} - f| \right\} = O \left(\frac{1}{\sqrt{n}} \right).
\]
Examples

→ \(V_k = O(k^4) \) for the univariate Gaussian mixtures.

→ \(V_k \leq k + 1 \) for the exponential families.

Case \(f \notin \mathcal{F} \)? It seems that we can have an error bound of the order of the bound for \(T_n \).
Examples

→ $V_k = O(k^4)$ for the univariate Gaussian mixtures.

→ $V_k \leq k + 1$ for the exponential families.

Case $f \notin \mathcal{F}$? It seems that we can have an error bound of the order of the bound for T_n.
Examples

$V_k = O(k^4)$ for the univariate Gaussian mixtures.

$V_k \leq k + 1$ for the exponential families.

Case $f \notin \mathcal{F}$? It seems that we can have an error bound of the order of the bound for T_n.
On the closure condition

For any set of parameters $\Theta \subset \mathbb{R}^s$ and any density $\psi(., \theta)$ defined on $\mathbb{R}^d \times \Theta$, let the collection \mathcal{C}_ψ be

$$\mathcal{C}_\psi = \{ \psi(., \theta) : \theta \in \Theta \}.$$

Proposition

Assume that

(i) For all $t \in \mathbb{R}^d$, $\hat{\psi}(t,.)$ is continuous on Θ.

(ii) For all $\theta_0 \in \bar{\Theta} \setminus \Theta$ and any sequence (θ_n) in Θ with $\theta_n \to \theta_0$, one has

$$\limsup_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{\mathcal{D}} \quad \text{or} \quad \liminf_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{\mathcal{D}}.$$

Then $\hat{\mathcal{C}}_\psi$ is closed in $\hat{\mathcal{D}}$.

G. Biau (Université Paris VI)
On the closure condition

For any set of parameters $\Theta \subset \mathbb{R}^s$ and any density $\psi(., \theta)$ defined on $\mathbb{R}^d \times \Theta$, let the collection C_ψ be

$$C_\psi = \{ \psi(., \theta) : \theta \in \Theta \}.$$

Proposition

Assume that

(i) For all $t \in \mathbb{R}^d$, $\hat{\psi}(t, .)$ is continuous on Θ.

(ii) For all $\theta_0 \in \bar{\Theta} \setminus \Theta$ and any sequence (θ_n) in Θ with $\theta_n \to \theta_0$, one has

$$\limsup_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D} \quad \text{or} \quad \liminf_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D}.$$

Then \hat{C}_ψ is closed in \hat{D}.
The mixture case

Let $\psi(., \theta)$ be a density defined on $\mathbb{R}^d \times \Theta$.

Proposition

Suppose that \hat{C}_ψ is closed in \hat{D}, and consider the k-th mixture class associated with ψ defined by

\[F_k = \left\{ \sum_{i=1}^{k} p_i \psi(., \theta_i) : p_i \geq 0, \sum_{i=1}^{k} p_i = 1, \theta_i \in \Theta \right\}. \]

Then \hat{F}_k is closed in \hat{D}.

True if $t \to \hat{\psi}(t,.)$ is continuous on Θ and for all $\theta_0 \in \Theta \setminus \Theta$ and any sequence (θ_n) in Θ with $\theta_n \to \theta_0$, one has

\[\limsup_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D} \quad \text{or} \quad \liminf_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D}. \]
Let \(\psi(., \theta) \) be a density defined on \(\mathbb{R}^d \times \Theta \).

Proposition

Suppose that \(\hat{C}_\psi \) is closed in \(\hat{D} \), and consider the \(k \)-th mixture class associated with \(\psi \) defined by

\[
F_k = \left\{ \sum_{i=1}^{k} p_i \psi(., \theta_i) : p_i \geq 0, \sum_{i=1}^{k} p_i = 1, \theta_i \in \Theta \right\}.
\]

Then \(\hat{F}_k \) is closed in \(\hat{D} \).

True if \(t \to \hat{\psi}(t,.) \) is continuous on \(\Theta \) and for all \(\theta_0 \in \bar{\Theta} \setminus \Theta \) and any sequence \((\theta_n) \) in \(\Theta \) with \(\theta_n \to \theta_0 \), one has

\[
\lim \sup_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D} \quad \text{or} \quad \lim \inf_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D}.
\]
Let \(\psi(., \theta) \) be a density defined on \(\mathbb{R}^d \times \Theta \).

Proposition

Suppose that \(\hat{C}_\psi \) is closed in \(\hat{D} \), and consider the \(k \)-th mixture class associated with \(\psi \) defined by

\[
F_k = \left\{ \sum_{i=1}^{k} p_i \psi(., \theta_i) : p_i \geq 0, \sum_{i=1}^{k} p_i = 1, \theta_i \in \Theta \right\}.
\]

Then \(\hat{F}_k \) is closed in \(\hat{D} \).

True if \(t \to \hat{\psi}(t, .) \) is continuous on \(\Theta \) and for all \(\theta_0 \in \bar{\Theta} \setminus \Theta \) and any sequence \((\theta_n) \) in \(\Theta \) with \(\theta_n \to \theta_0 \), one has

\[
\limsup_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D} \quad \text{or} \quad \liminf_{n \to \infty} \hat{\psi}(., \theta_n) \notin \hat{D}.
\]