Transitioning Applications to Ontologies

Kalina Bontcheva
on behalf of
the TAO consortium

http://www.tao-project.eu

Funded by: European Commission – 6th Framework
Project Reference: IST-2004-026460
Addressing the problem of transitioning legacy applications to ontologies

What is a legacy software system:
- “A large software system that is vital to [an] organisation, but resists modification and evolution to meet new and constantly changing business requirements”

Towards semantic-assisted software engineering
Legacy systems: Main Problems

- Enterprise Application Integration:
 - Built with languages and data models that are now out-dated
 - Badly structured and hard to maintain
 - Badly documented and understood
 - Difficult to integrate with each other and with new systems
 - Need for migration towards Web 2.0 applications & services
TAO: Towards a Low-Cost Migration Path

- Make transitioning to ontologies fast and effective
- Build a reusable transitioning process
- Minimize consulting time during migration and integration
- Minimize costs
- Reduce integration overheads and limit risk
Transitioning Process

- **Semi-automatic learning of domain ontologies** from software artefacts and legacy content
- **Semantic augmentation of legacy content** and web service definitions
- **Heterogeneous & distributed** semantic repositories
- Transitioning Infrastructure supporting IT providers
Partner Contributions

- **Semantic annotation** of text and multimedia content; **GATE** – widely used open-source infrastructure for **text mining**
- **Transitioning methodology**
- **Machine learning** and data mining
- **Transitioning infrastructure**; exploitation
- **Most scalable & efficient** semantic repository
- **Content and knowledge management**
- Aviation **case study**; aircraft manufacturer
Transitioning Problems

- From legacy databases to ontologies
 - Towards semantic-based software engineering
 - Transitioning web applications towards ontologies and services
Improving *semantic interoperability* in business processes through Semantic technologies
Example Learnt Ontology – 400k triples
Example Learnt Ontology (2)
A Semantic Tagging Example

Content Augmentation of Maintenance Manuals

Valve

Non-Return-Valve
- Denominations
 - Full: Non Return Valve
 - Abbrev: NRV
 - valve-1888
 - Denominations
 - Full: PUMP1 Non Return Valve
 - valve-1838
 - Denominations
 - Full: HYDR Non Return Valve

Maintenance Data Repository

Heterogeneous Knowledge Store

Semantic Content Augmentation

Annotation Interface

Remove PUMP1 NR valve

Check PUMP1 valve and clean it

Ontologies

Non-Return-Valve
- PUMP1 NRV
 - threshold: 3422 psi
Transitioning Problems

- From legacy databases to ontologies
- Towards semantic-based software engineering
 - Transitioning web applications towards ontologies and services
Learning Ontologies from Software Artefacts

Software data sources

Structured data = networks

Unstructured data = textual documents

Document network

= a set of interlinked documents; each link has a type and a weight

Code samples, source code, execution logs...

Comments, manuals, web pages, forums...
Creating a Document Network

DocumentFormat.class

```java
/** The format of Documents. Subclasses of DocumentFormat know about
 * particular MIME types and how to unpack the information in any
 * markup or formatting they contain into GATE annotations. Each MIME
 * type has its own subclass of DocumentFormat, e.g. RtfDocumentFormat.
 * RtfDocumentFormat, HtmlDocumentFormat, these classes inherit themselves
 * with a static index rendering area when they are constructed. Static
 * getDocumentFormat methods can then be used to get the appropriate
 * format class for a particular document.
 */
public abstract class DocumentFormat
    extends AbstractLanguageResource implements LanguageResource{

    /**
     * Find a DocumentFormat implementation that deals with a particular
     * MIME type, given that type.
     * @param mimeType this document will receive as a feature
     * @param mimeType the MIME type of the feature it
     * @param mimeType the MIME type that is given as input
     */
    static public DocumentFormat getDocumentFormat(String mimeType, DocumentFormat subtype) {
        
    }

    } // class DocumentFormat
```
Ontology Learnt from Software Code
Google-like Conceptual Search (1)
Search knowledge with CLOnE QL

Ontology: w/gate-ontology-instances.owl

Query: what are the parameters of annie pos tagger?

Result:

Answer is showing relations between identified concepts given in the query.
Transitioning Problems

✓ From legacy databases to ontologies
✓ Towards semantic-based software engineering
➤ Transitioning web applications towards ontologies and services
Transitioning Web Applications

- Legacy application:
 - database driven
 - no interoperability

- Ontologies + SOA:
 - Learn ontologies
 - Manage complex resources and knowledge links
 - Use Service Oriented Application to integrate added value services from other suppliers: cartography, translation, booking services...
Software Demonstrations on TAO Web site

- Learning ontologies from software code
- Supporting software developers with conceptual search
- RDB2Onto
Thank you! Questions?

This presentation + demos:
www.tao-project.eu/demos-dec07/

Kalina Bontcheva:
kalina@dcs.shef.ac.uk
Contact Information

For queries / further information, please contact the project co-ordinator:

Kalina Bontcheva
Department of Computer Science
University of Sheffield
Regent Court
211 Portobello Street
Sheffield S1 4DP

phone: (+44 - 114) 222 1930
fax: (+44 - 114) 222 1810
email: K.Bontcheva@dcs.shef.ac.uk