Large-Scale RLSC Learning Without Agony

Weny Li
wyli@cse.cuhk.edu.hk

Dept. Computer Science & Engineering
The Chinese University of Hong Kong

Joint work with Kin-Hong Lee, Kwong-Sak Leung
Introduction

- **Supervised Learning**
 - Given \((x_i, y_i)_{i=1}^m, \) where \(x_i \in R^d, y_i \in R \)
 - Seek \(y = f(x) + N(0, \Sigma) \)

- **An Effective Approach**
 - Define \(H_K = \text{completion} \) of \(\{ \sum_{x \in R^d} c_x K_x(\cdot), c_x \in R \} \)
 - \(\text{inner product given by the kernel } K \)
 - Seek \(f(\cdot) \in H_K \) to minimize \(L = \frac{1}{m} \sum_{i=1}^m (y_i - f(x_i))^2 + \gamma \| f \|_K^2, \gamma \geq 0 \)

- We are seeking a simple function that has small empirical error.
- For classification \(\rightarrow \) Regularized Least-Squares Classification.

Vapnik 1998, Poggio et. al. 1990
Introduction

- **Representer Theorem**
 - It’s tractable to seek a solution in the function space with (infinite) dimensions H_K
 - Only finite parameters are not zero $f(\cdot) = \sum_{i=1}^{m} c_i K_{x_i}(\cdot)$

- **Computation**
 - The parameters come from a positive definite linear system

$$Ac = y, \text{ where } A = K + \gamma m I$$

$$K_{ij} = K_{x_i}(x_j), I: \text{identity matrix}, c = (c_1, \ldots, c_m)^T, y = (y_1, \ldots, y_m)^T$$

$$\min L = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2 + \gamma \|f\|_{K}^2$$

Kimerldorf & Wahba 1971, Girosi et.al. 1995, Schölkopf et.al. 2001
Introduction

- Computation (cont.)
 - Simple, efficient
 - Cholesky factorization for small-medium sized problems
 - Time: $O(m^3)$, space: $O(m^2)$
 - Yet, how about large-scale problems?
 - Suppose $m=1,000$ takes 8MB memory & 1 second
 - $m=20,000$ takes ~3.2GB memory & 8,000 seconds
 - $m=1,000,000$ takes ~8,000GB memory & ~31.7 years

Direct methods impractical!!!
Previous Work

- Approximation methods
 - Low rank approximations
 - choose a subset of the training dataset and represent these points exactly in RKHS, while representing other points approximately as linear combinations of the selected points
 - Assumption: most eigenvalues of the kernel matrix are zero

\[A c = y \]

Previous Work

- Deterministic Approach
 - Sherman-Morrison-Woodbury formula to calculate the inverse of the kernel matrix
 - Works well on a linear kernel with a small dimension.

Fung & Mangasarian, 2001
Deterministic Approaches

- Iterative methods
 - Begin with a given approximated solution, modify the solution successively until convergence.

- Two vital elements
 - Fast Matrix-Vector Multiplication
 - Fast Gauss Transform et. al.
 - Iterative Scheme
 - Conjugate gradient is generally suggested

Conjugate gradient for p.d. system

Instead of solving the system directly, CG tries to minimize
\[\frac{1}{2} c^T Ac + y^T c \]

Starting arbitrarily, CG slides successively to another point along the conjugate direction to minimize the quadratic function.

The minimizer is equivalent to the solution to the linear system when CG converges.

Coupled with incomplete Cholesky factorization as a preconditioner, CG is de facto iterative solver for sparse p.d. systems.

In machine learning, the kernel matrix is generally not sparse.

- Think of a Gaussian RBF kernel: none of the elements are zero.
- It is generally difficult to find a pre-conditioner for such dense systems. Will a naïve application of CG still be the best solution?
Domain Decomposition: $Ac=y$

01: $s = \{1, \ldots, m\}$
02: Divide s to subsets $s_i, i = 1, \ldots, \ell$
03: $t = 0, c = 0$
04: repeat
05: $t = t + 1, c' = 0$
06: for $i = 1$ to ℓ do
07: Solve c_{s_i}' by $A_{s_i,s_i} c_{s_i}' = y_{s_i}$
08: $y = y - A_{s_i} c_{s_i}'$
09: $c_{s_i} = c_{s_i} + c_{s_i}'$
10: endfor
11: until c converges
12: return c

Notes:

- Assume the size each sub-system is $k = \left\lceil \frac{m}{\ell} \right\rceil$
- Time complexity per iteration (step 5—10): $O(\ell k^2) + O(m^2) = O(km) + O(m^2)$
- Memory requirement:
 - $O(m^2)$ if we store the whole A
 - $O(km)$ if we only store A_{s,s_i}
- The major computation, which is from step 8, can be parallelized.
Convergence

- **Observation 1:** For any $m \times m$ positive definite matrix A, there exist m points $X = \{x_1, \ldots, x_m\}$ in a space \mathbb{R}^d and a kernel function K defined on \mathbb{R}^d such that $A_{ij} = K(x_i, x_j), 1 \leq i, j \leq m$.

- Define $H_K = \left\{ \sum_{j=1}^{m} c_x K(x_j) \mid c_x \in \mathbb{R} \right\}$ with an inner product by K, then:
 - a solution to $Ac = y \leftrightarrow$ a function f in H_K such that $f(x_i) = y_i$ for all x_i.

- Given $X_i \subseteq X, 1 \leq i \leq \ell$ such that $\bigcup X_i = X$, H_i: subspace of functions of H_K associated with X_i. That is: $H_i = \left\{ \sum_{x \in X_i} c_x K(x) \mid c_x \in \mathbb{R} \right\}$

- Given f in H_K, define **interpolation operators** $P_i : H_K \rightarrow H_i, i=1,\ldots,\ell$ by $P_i f = \sum_{x \in X_i} c_x K(x)$ and $(P_i f)(z) = f(z)$ for all $z \in X_i$.
Observation 2:

- Each interpolation operator P_i in fact defines the orthogonal projection from H_K to H_i.

- With the two observations, we associate the process of solving a p.d. linear system with alternating projections in an r.k.h.s.
von Neumann’s Alternating Projections

von Neumann’s alternating projection theorem:
- H_1 and H_2: two closed subspaces of a general Hilbert space H
- P_1 and P_2: two orthogonal projections onto H_1 and H_2.
- How to get the orthogonal projection $P_1 \wedge P_2$ onto $H_1 \cap H_2$?

$$\lim_{t \to \infty} \left(P_1 P_2 \right)^t f = \left(P_1 \wedge P_2 \right) f$$

- Generalizes to any finite number of subspaces and corresponding projections.
- The convergence speed is at least linear. (a pessimistic estimation)

von Neumann, 1955, Smith et. al 1977
A Domain Decomposition Approach

- \(f_0 = f \) and \(f_{lt+i} = f_{lt+i-1} - P_i f_{lt+i-1} \), where \(t = 1, 2, \ldots, \) and \(i = 1, \ldots, l \)
- Correspondingly,
- \(c_0 = 0 \) and \(c_{lt+i} = c_{lt+i-1} + P_i f_{lt+i-1} \), where \(t = 1, 2, \ldots, \) and \(i = 1, \ldots, l \)
- Angle between subspaces is vital!!!
Experiments

Text Categorization

- Three datasets from CMU text mining groups
 - 20-newsgroups: ~19,000 webpages in 20 classes
 - Webkb: ~8,300 pages in 7 classes
 - 7-sectors: ~4,600 pages in 7 classes
- $Ac = y$
 - Linear&Gaussian RBF kernels are used.
 - Necessary parameters are selected via CV.
 - y: corresponding to the labels of each document
- The domain decomposition approach reports better convergence property over conjugate gradient

http://www.cs.cmu.edu/~TextLearning/datasets.html
Experiments

(a) 20-newsgroups (linear)
(b) webkb (linear)
(c) 7-sectors (linear)
(d) 20-newsgroups (Gaussian)
(e) webkb (Gaussian)
(f) 7-sectors (Gaussian)
An empirical study on iterative schemes for RLSC, GP …
- A variant of block Gauss-Seidel method is suggested in solving p.d. linear systems in machine learning. Also a domain decomposition approach.
- Divide and conquer works

An analysis
- Alternating projections in r.k.h.s.
- Which factor is important to the convergence.
- How to adjust this factor. (not included)

Further work
- Interleaving CG with Gauss-Seidel or other methods…
- Comparisons with kernel conjugate gradient (Ratliff & Bagnell, 2007)
Thanks