Open Vocabulary Speech Analysis in Vitalas

Daniel Schneider
Speech Group, Fraunhofer IAIS
Outline

- Vitalas Scenario: Broadcast News Audio Indexing
- Structural Audio Analysis
- Open Vocabulary Speech Recognition
- Demo: AudioMining
Challenge in Vitalas: Large Scale Broadcast News Indexing

- Huge amount of data (> 10,000 hours)

- Heterogeneous material
 - From various sources of unknown type
 - High topic variability
 - Huge vocabulary
 - Multilingual data

- Requires efficient and robust algorithms for...
 - Information extraction
 - Information retrieval
Structural Audio Analysis in Vitalas

- Unstructured Audio Data
- Homogeneous Segmentation
- Speech Detection
- Gender Detection
- Speaker Clustering
- Programme Identification via Jingle
Speech Recognition

- Structural Analysis

- Speech Recognition

Transcripts can be used for...
- Search in entire archive (“Audio-Google”)
- Media observation (Alert if keyword occurs)
- Input for text mining (e.g. Topic Detection)
Speech Recognition Challenges

- Out-of-Vocabulary problems with classic word based ASR of broadcast data
 - New and popular words (e.g. Gammelfleischskandal - „rotten meat scandal“)
 - Proper names (companies, cities, people)

- Compound words in German (climate conference – Klimakonferenz)
- Huge Lexica required – large effort

"... der Klimakonferenz der Vereinten Nationen ..."

der Kiel Markt Konferenz der Vereinten Nationen
Phonetic Approach to Open Vocabulary Indexing

- Idea:
 - Search on phonetic subword level instead of word level
 - Search for a sequence of sounds instead of words
Phonetic Approach to Open Vocabulary Indexing

1. Generate transcription on subword level (phone or syllable)

 ...?u:.?En.kli:.ma:.kO.fe:.rEnts... ...?aN.ge:.la:.mE6.k@l...

2. Break down search term into subword units

 Klimakonferenz → kli:.ma:.kOn.fe:.rEnts

3. Fuzzy Phonetic Search

 ...?u:.?En.kli:.ma:.kO.fe:.rEnts... ...?aN.ge:.la:.mE6.k@l...

 Klimakonferenz
Phonetic Approach (1): Generate Subword Transcription

Feature Extraction
\[x_1^T = x_1 \cdots x_T \]

Search best matching syllable sequence
\[s_1^N = \max_{s_i^N} p(s_1^N)p(x_1^T | s_1^N) \]

Output: Syllable Transcription
\[s_1^N = s_1 \cdots s_N \]

Syllable Pronunciation Dictionary

Acoustic Model
\[p(x_1^T | s_1^N) \]

Syllable Language Model
\[p(s_1^N) \]

- Cross-Word Triphone Hidden Markov Models
- Bi- / Trigram Models

...?u:.?En.kli:.ma:.kO.fe:.rEnts...
Phonetic Approach (2): Fuzzy Syllable Search

- Break down search term: *Klimakonferenz* → kli:.ma:.kOn.fe:.rEnts
- Goal: Retrieval of documents containing similar syllable sequences
- Fuzzy search based on Levenshtein Distance between
 - Single syllables
 - Syllable sequences

Examples distances between single syllables:
- d_e:_s_ d_e:_s_ zero
- d_e:_s_ k_O_n_ high
- d_e:_s_ d_i:_s_ low
- d_e:_s_ d_l:s_ medium

Examples distances between syllable sequence:
- k_l_i:_ m_a:_ k_l_i:_ m_a:_ zero
- k_l_i:_ m_a:_ k_l_i:_ n_a:_ low
- k_l_i:_ m_a:_ k_l_i:_ n_6_ high

- Solution based on Dynamic Programming (c.f. Speech Decoding)
Properties of Phonetic Subword Approach

- The set of subword units is finite and (rather) small
 - Complete vocabulary coverage (no OOV)
 - 10,000 syllables compared to 300,000+ words
 - Compact ASR search space

- Implicit decomposition of compounded words
 - \textit{kli:.ma:.kOn.fe:.rEnts} gives 100\% hit for the search terms \textit{Klima, Konferenz, Klima Konferenz, Klimakonfernez}

- Implicit stemming capabilities of fuzzy search
 - Skandal – skan.da:l
 Skandals – skan.da:ls (less important to learn genitive explicitly)
Experiments: Fraunhofer AudioMining Corpus

- High Quality Studio Data
 - Accurate sentence level transcriptions
 - (Almost) no background noise
 - Only one speaker per segment

- 14 hours of carefully annotated training data
- 3 hours of evaluation data (disjoint from training set)

- Main Challenges
 - Speaking rate (interview vs. read speech)
 - Spontaneous Speech in interview situation

Data: German News Shows
Comparable to VITALAS data sets from IRT and INA

Broadcast News
Broadcast Conversation
Experiments: Model Setup

- Acoustic Models
 - Maximum Likelihood Reestimation
 - Phonetic Clustering of triphones
 - 7300 triphone HMMs with up to 16 Gaussian mixture components

- Language Models trained on 2000-2006 newswire data with CMU SLM toolkit
 - 80 million running words
 - Text transformed to syllables
 - Corpus Topics: Politics, Economy, Culture, Sports

- Pronunciation Lexicon: 10000 most frequent syllables from LM training
Current Results - Speech Recognition

- Task: Syllable Transcription of 3 hours of Broadcast Data (Radio Shows)

<table>
<thead>
<tr>
<th>Syllable Error Rate</th>
<th>ASR Realtime Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- High error rates (test set includes several BC shows)
- Example for frequent substitution error:
 - Reference: U_n_t_ (and)
 - Recognized: U_n_ (an‘)
- Errors partly covered by fuzzy retrieval
Current Results – Fuzzy Phonetic Retrieval

- Task: Detect 213 keywords and keyphrases in recognition results
- Confidence thresholds of the fuzzy search can be chosen depending on the application

<table>
<thead>
<tr>
<th>Confidence Threshold</th>
<th>Precision</th>
<th>Recall</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70</td>
<td>0.66</td>
<td>0.65</td>
<td>Equal Error</td>
</tr>
<tr>
<td>0.85</td>
<td>0.91</td>
<td>0.53</td>
<td>Tuned for Precision</td>
</tr>
</tbody>
</table>

- Some errors due to…
 - Search term is substring of actual spoken compound word (Klima – Klimakonferenz)
 - Short search terms consisting of highly frequent syllables (Mutter – mU.t6)
Additional Word Context for Enhanced Display of Results

1. Vocabulary Independent Syllable Recognition

 Audiofile

 Speech

 ...?u:.?En.kli:.ma:.kOn.fe:.rEnts...

 Syllable Database

 Syllable-Search

2. „Classic“ Word ASR

 Audiofile

 Speech

 ...der Kiel Markt Konferenz der Verein...
Demo: AudioMining
Next Steps

- Evaluate the syllable approach on other languages
 - Vitalas End-Users: IRT (German) and INA (French)

- Improve Recognition Accuracy
 - Use information extracted by structural analysis
 - Speaker / domain / programme adaptivity

- Improve Information Retrieval Accuracy
 - Fusion of word, syllable and phoneme recognition results
 - Exploit ASR output graph instead of 1-Best

- Consider Scalability
 - Current search approach not applicable for 10k hours archive
 - Evaluate efficient implementations and alternatives
Thank you!