Closed Pattern Mining in Strongly Accessible Set Systems

Mario Boley, Tamás Horváth, Axel Poigné, Stefan Wrobel Fraunhofer Institute IAIS & University of Bonn, Germany

given finite set E, membership oracle $M_{\mathcal{F}}: 2^{E} \to \{0,1\}$ (defining $\mathcal{F} \subseteq 2^{E}$), closure operator $\rho: \mathcal{F} \to \mathcal{F}$, **list** the family of ρ -closed sets $\rho(\mathcal{F}) = \{C \in \mathcal{F}: C = \rho(C)\}$

Example:

street network: graph G transaction database \mathcal{D} : subsets of E(G)

- E: edge set E(G)
- \mathcal{F} : {X \subseteq E(G) : X is freq. and *connected*}
- ρ : X → connected component of X in $\bigcap \{T \in \mathcal{D}: T \supseteq X\}$

main result:

problem can be solved efficiently with a simple DFS algorithm for a general class of set systems (which for instance do not satisfy anti-monotonicity)

set system (E, \mathcal{F}) is **strongly accessible** if $\emptyset \in \mathcal{F}$ and for every X,Y $\in \mathcal{F}$ satisfying X \subset Y, there exists an e \in Y \setminus X such that Y \setminus {e} $\in \mathcal{F}$.

 $\Rightarrow \text{ there is a sequence } X = X_0, X_1, \dots, X_k = Y \text{ s.t. } |X_i \setminus X_{i-1}| = 1 \text{ for } i = 1, \dots, k$

formally the following statement holds:

Thm: For any finite strongly accessible set system (E, \mathcal{F}) (i) given by a membership oracle M computable in time T_M , (ii) for any closure operator $\rho: \mathcal{F} \to \mathcal{F}$, computable in time T_ρ

the family of closed sets can be listed with delay ($|E|^2T_MT_\rho$).

Details at the poster!

Fraunhofer Institut Intelligente Analyse- und Informationssysteme