Applying a resource Nexus analysis to quantify synergies and trade-offs in the agricultural sector and reveal implications of a legume production shift

Georgios Tsimelas, Dr. Dimitris Kofinas, Prof. Chrysi Laspidou
introduction - What is the Nexus?

Resources Nexus

- Resources systems are interdependent
- Multiple and complex mechanisms describe their interrelations
- These interrelations are distinguished in synergies and trade-offs
- The Nexus is a dynamic system: A change in one of the components causes domino effects in all
- The Nexus approach facilitates a holistic approach and integrated management of resources
Nexus approaches

- Many alternative nexus approaches have been introduced
- The well-established Water-Energy-Food nexus
- Soil, Land, Biodiversity, Ecosystems, Health, Climate, etc. have also been interlinked through different approaches
- WEFCL is the five-component nexus approach introduced by the SIM4NEXUS EU Project, in RBD, Local, National, European and Global scale

for more information visit www.sim4nexus.eu
our methodology

case study

• application of a simplified SIM4NEXUS scheme in farm level
• October 2019- September 2020
• case study: an agricultural cooperative in Thessaly plain, Greece
• over 20,000 stremmas of cereals, cotton, legume and energy crops
• drip irrigation systems

steps

• conceptual model
• identification of interlinkages
• definition of equations
• data collection
• assessment of scenarios
• conclusions
Land uses: maize, wheat, barley, cotton, beans, rapeseed, sunflower

Energy for water pumping → Drillings → Precipitation → Drip irrigation → Water Losses

Energy for machinery → Drillings → Precipitation

Fertilizers and Pesticides → Drillings → Precipitation

CO₂ emissions → CO₂ emissions

ET → Food production

Co-designed with the cooperative
data sources

agricultural cooperative
- fertilizers and pesticides use
- timeline for all agricultural activities
- type of machinery
- irrigation and drilling specifications
- land uses
- pumping energy
- aquifer level

The Nexus_SDM data base for water district of Thessaly (GR08)
- water demand needs
- evapotranspiration
- losses

EPA and literature for functions and parameters relevant to energy, carbon and water footprints and drip irrigation system specifications

Hellenic National Meteorological Service
- precipitation

Hellenic Statistical Authority
- food production
water crop demand – land use

<table>
<thead>
<tr>
<th></th>
<th>Maize</th>
<th>Wheat</th>
<th>Barley</th>
<th>Rapeseed</th>
<th>Beans</th>
<th>Cotton</th>
<th>Sunflower</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>APR</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>74</td>
<td>37</td>
</tr>
<tr>
<td>MAY</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>0</td>
<td>99</td>
<td>136</td>
</tr>
<tr>
<td>JUN</td>
<td>188</td>
<td>0</td>
<td>0</td>
<td>114</td>
<td>0</td>
<td>112</td>
<td>223</td>
</tr>
<tr>
<td>JUL</td>
<td>235</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>69</td>
<td>121</td>
<td>93</td>
</tr>
<tr>
<td>AUG</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>SEP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>0</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>OCT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NOV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>93</td>
</tr>
<tr>
<td>DEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Maize Wheat Barley Rapeseed Beans Cotton Sunflower
JAN 0 0 0 0 0 0 0
FEB 0 0 0 0 0 0 0
MAR 0 0 0 0 0 0 0
APR 14 0 0 19 0 74 37
MAY 39 0 0 69 0 99 136
JUN 188 0 0 114 0 112 223
JUL 235 0 0 48 69 121 93
AUG 71 0 0 95 0 115 0
SEP 0 0 0 128 0 93 0
OCT 0 0 0 120 0 0 0
NOV 0 0 0 0 0 128 93
DEC 0 0 0 0 0 0 0

crop demands / stremma
Sim4Nexus database
Nexus_SDm
Laspidou et al, 2020

crop demands
water irrigation demand-land use

- precipitation
 Hellenic National Meteorological Service

- estimation of water needs by extracting precipitation
energy demand for water pumping

• no tanks in the irrigation system
• drip irrigation system specifications
• flowrate to cover crop needs
• pumping duration to meet the needed water volumes per day
• energy demand to pump from aquifer level at -150m for the estimated flowrates and duration
CO₂ emissions for water pumping

Environmental Protection Agency:
1 MJ produces 0,0595 kg CO₂
energy for machinery-land use

- Energy for the life cycle of the machinery according to existing inventories for the cooperative machinery specifications
 Nemecek, 2007; Mantoam, 2016; Tsatsarelis, 1991

- Energy for the machinery operation
CO$_2$ emissions from machinery – land use

- emissions for the life cycle of the machinery: 9000 kg CO$_2$
 Nemecek, 2007; Mantoam, 2016;

- emissions for the machinery operation

EPA
energy for fertilizers and pesticides - land use

nitrates and urea
cooperative data
energy consumption: 66.4 MJ/kg
G. Unakitan, 2010

pesticides
cooperative data
Audsley et al., 2009
CO₂ emissions from fertilizers & pesticides – land use

Annual CO₂ emissions for fertilizer use

```
<table>
<thead>
<tr>
<th>Crop</th>
<th>CO₂ emissions (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>128,880</td>
</tr>
<tr>
<td>Wheat</td>
<td>1,208,250</td>
</tr>
<tr>
<td>Barley</td>
<td>604,125</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>24,165</td>
</tr>
<tr>
<td>Beans</td>
<td>12,083</td>
</tr>
<tr>
<td>Cotton</td>
<td>644,400</td>
</tr>
<tr>
<td>Sunflower</td>
<td>83,772</td>
</tr>
</tbody>
</table>
```

Annual CO₂ emissions for pesticides use

```
<table>
<thead>
<tr>
<th>Crop</th>
<th>CO₂ emissions (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>3,754</td>
</tr>
<tr>
<td>Wheat</td>
<td>56,580</td>
</tr>
<tr>
<td>Barley</td>
<td>28,014</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>2,653</td>
</tr>
<tr>
<td>Beans</td>
<td>2,225</td>
</tr>
<tr>
<td>Cotton</td>
<td>19,439</td>
</tr>
<tr>
<td>Sunflower</td>
<td>4,745</td>
</tr>
</tbody>
</table>
```
land use – food production and other crop production

food production estimated according to ELSTAT, 2018

production yields for Thessaly
Total Annual Energy Demand

Total energy consumed by each crop in comparison to the total annual energy demand.

- **Sunflower**: 7,045,195 MJ
- **Cotton**: 37,940,840 MJ
- **Beans**: 1,612,756 MJ
- **Rapeseed**: 2,023,672 MJ
- **Barley**: 27,911,757 MJ
- **Wheat**: 57,323,623 MJ
- **Maize**: 9,843,119 MJ
- **Total Crops**: 145,014,132 MJ
total CO₂ emissions

Total CO₂ emissions produced by each crop in comparison to the Total CO₂ emissions produced.
Crop Water needs (m³)

- Maize: 497,141
- Wheat: 0
- Barley: 0
- Rapeseed: 114,230
- Beans: 157,356
- Cotton: 1,158,626
- Sunflower: 372,995
- Total Water needs: 2,300,348
scenarios

reduction of
• sunflower
• rapeseed
• cotton
• maize

and shifting to beans production

a: 5%
b: 20%
c: 60%

<table>
<thead>
<tr>
<th></th>
<th>Scenario a</th>
<th>Scenario b</th>
<th>Scenario c</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>-2.4 %</td>
<td>-9.6 %</td>
<td>-28.8 %</td>
</tr>
<tr>
<td>energy</td>
<td>-1.5 %</td>
<td>-5.7 %</td>
<td>-17.1 %</td>
</tr>
<tr>
<td>CO$_2$ emissions</td>
<td>-1.5%</td>
<td>-5.7%</td>
<td>-17.1%</td>
</tr>
</tbody>
</table>
Conclusions

• WEF Nexus: holistic, integrated, interdisciplinary approach

• resources consumption and emissions production can occur within and out of the system boundaries. Both should be considered

• cotton and maize are the most nexus intensive crops of the cooperative

• fertilizers production and water pumping are the greatest contributors to energy consumption and CO2 emissions

• legumes crops are a wise nexus solution

• a partial shift of crops to legume can save up to 28.8% water and 17.1 % energy and 17.1 % reduction in CO₂ emissions
thank you for your attention!