A Completed Information Projection Interpretation of Expectation Propagation

John MacLaren Walsh
Dept. of ECE
Drexel University
Philadelphia, PA 19104
Exponential Family Densities & Rudimentary Information Geometry

- form

\[p_{\theta}(\theta) = \exp (t(\theta) \cdot \lambda - \psi_t(\lambda)) , \quad \psi_t(\lambda) := \log \left(\int_\Theta \exp (t(\theta) \cdot \lambda - \psi_t(\lambda)) d\theta \right) \]

(1)

- duality between partition function and neg-entropy

\[\eta := \int_\Theta t(\theta) \exp (t(\theta) \cdot \lambda - \psi_t(\lambda)) d\theta \]

This map between \(\lambda \) and \(\eta \) is one to one, and may be interpreted to be the gradient of the log partition function

\[\eta = \nabla_\lambda \psi_t(\lambda) \]

This relation indicates a Legendre transformation connection between \(\lambda \) and \(\eta \). In particular, due to the convexity of the log partition partition function, we can form its Fenchel conjugate as

\[h(\eta) := - \inf_{\lambda_1} \{ \psi_t(\lambda_1) - \eta \cdot \lambda_1 \} = \psi_t(\lambda) - \eta \cdot \lambda \]
Expectation Propagation

- joint density

\[p_{r, \theta}(r, \theta) \propto \prod_{a=1}^{M} f_{a, r}(\theta_a), \quad \theta_a \subseteq \theta \]

(2)

- approximate

\[p_{r, \theta}(r, \theta) \approx \prod_{a=1}^{M} g_{a, \lambda_a}(r)(\theta_a) \]

(3)

- refinement rules

\[g_{a, \lambda_a} = \text{arg min}_{g_{a, \lambda_a}} \mathcal{D}(v_a \| q) \]

\[v_a(\theta) := \alpha f_{a, r}(\theta_a) \prod_{c \neq a} g_{c, \lambda_c}(\theta_c), \quad q(\theta) := \beta \prod_{c=1}^{M} g_{c, \lambda_c}(\theta_c) \]

(4)

\[\nabla_{\lambda_a} \mathcal{D} = \mathbb{E}_q [t_a(\theta_a)] - \mathbb{E}_{v_a} [t_a(\theta_a)] \]

(5)
Bregman Divergences

• differentiable convex function is lower bounded by 1st Taylor app. h of Legendre type [1] then

$$h(\chi) \geq h(\varsigma) + \nabla h(\varsigma) \cdot (\chi - \varsigma) \quad (6)$$

with equality if and only if $\chi = \varsigma$.

• Bregman Divergence [1], B_h associated with h:

$$B_h(\chi, \varsigma) := h(\chi) - h(\varsigma) - \nabla h(\varsigma) \cdot (\chi - \varsigma)$$

has some of the properties of a distance. In particular, we see from (6) that

$$B_h(\chi, \varsigma) \geq 0 \quad B_h(\chi, \varsigma) = 0 \iff \chi = \varsigma$$

• non-symmetric, triangle inequality in only a subset of cases

• KL Divergence: choose h as negentropy
Method of Alternating Bregman Projections

Find points in 2 convex sets \mathcal{P} and \mathcal{Q} which min. the Bregman divergence B_h between these two sets. The projection algorithm that is often employed in this case is the *method of alternating projections* [2, 3, 4] which may be described via the iteration

$$
\chi^{(k)} := \overset{←}{\mathcal{P}} s^{(k)}, \quad s^{(k+1)} := \overset{→}{\mathcal{Q}} \chi^{(k)}
$$
Dykstra’s Algorithm with Cyclic Bregman Projections

\[
\chi^{(k+1)} := \left\lceil \nabla h^* \left(\nabla h(\chi^{(k)}) + \tau^{(k+1-S)} \right) \right\rceil_{C_{kmod}} \quad (7)
\]

\[
\tau^{(k+1)} := \nabla h(\chi^{(k)}) + \tau^{(k+1-S)} - \nabla h(\chi^{(k+1)}) \quad (8)
\]

where we initialize \(\tau^{(-S+1)} , \ldots , \tau^{(0)} = 0 \). This algorithm, under some assumptions, can be shown \([1]\) to solve the best approximation problem, in which one is seeking the point in \(C := \bigcap_{i=0}^{S-1} C_i \) which minimizes the Bregman divergence \(B_h \) in the first argument from the initial point \(\chi^{(0)} \).

method of cyclic Bregman projections\([5][6]\) Instead of choosing the convex set to project on cyclicly, one may also choose it randomly \([7, 8]\).
Two Sets Related to EP

• Make as many copies of the space as factors

• One set: densities which are supported on all copies being equal

\[Q := \{ b \in B | \mathbb{P}_b [x^1 = \cdots = x^M] = 1 \} \]

(9)

• Another set: product of densities of approximating family form

\[\mathcal{P} := \{ b | b = \exp (\lambda \cdot \hat{t}(x) - \psi_t(\lambda)), \lambda \in \mathbb{R}^{MV} \} \]

(10)

• Starting point: one factor per copy
Actual Sets \mathcal{P} & \mathcal{Q} for 2 Bits

Figure 1: The sets \mathcal{E}_P projects between.
EP as a Hybrid Algorithm:

- Desired solution is projection:
 \[
 \mathbf{p}_P \circ \mathbf{p}_Q \left(\frac{\int_{\Theta^M} s(x) \prod_{a=1}^M f_a(x^a) dx}{\int_{\Theta^M} \prod_{a=1}^M f_a(x^a) dx} \right)
 \]
 \[\quad (11)\]
 \[
 \mathbb{E}_g[t(x^a)] = \mathbb{E}_{\theta|r}[t(\theta)] \quad \forall a \in \{1, \ldots, M\}
 \]

- EP iteratively tries to find it
 \[
 \rho_0, \tau_0 = 0, \quad \chi_0 = \frac{\int_{\Theta^M} s(x) \prod_{a=1}^M f_a(x^a) dx}{\int_{\Theta^M} \prod_{a=1}^M f_a(x^a) dx}, \quad k \in \{0, 1, \ldots, \}
 \]
 \[
 s_k := \mathbf{p}_P \circ \nabla h^* (\nabla h(\chi_k) + \tau_k), \quad \tau_{k+1} := \nabla h(\chi_k) + \tau_k - \nabla h(s_k)
 \]
 \[
 \chi_{k+1} := \mathbf{p}_P \circ \mathbf{p}_Q \circ \nabla h^* (\nabla h(s_k) + \rho_k), \quad \rho_{k+1} := \nabla h(s_k) + \rho_k - \nabla h(\chi_{k+1})
 \]

- Processing for left projection followed by right projection

- Can be viewed as a hybrid between alt. breg. proj. and Dykstra’s w/ cyclic proj.
Figure 2: EP (solid arrows), and the composite projection problem it iteratively solves (dotted arrows), but with $\|\|_2^2$ as the Bregman divergence and different sets.
What does all this mean:

• Alternatively, could say that EP replaces a left proj. w/ a right proj. and log convex for convex from a convergent algorithm (Dykstra’s w/ cyclic proj.)

• Later could be root of occasionally good convergence behavior.

• favorite toy open problem of presenter, yours too now?
Relationship to Prior Work (what was innovated)

• Innovated connection with Dykstra allowed for possible explanation of extrinsic information extraction within context of projection algorithm

\[
g_{a,\lambda_a} = \arg\min_{g_{a,\lambda_a}} \mathcal{D}(v_a \| q)
\]

\[
v_a(\theta) := \alpha f_{a,r}(\theta_a) \prod_{c \neq a} g_{c,\lambda_c}(\theta_c), \quad q(\theta) := \beta \prod_{c=1}^{M} g_{c,\lambda_c}(\theta_c) \tag{12}
\]

• previous expositions had it as an intervening step amidst other projection
So You Don’t Go Home Hungry: Nonlinear Block Gauss Seidel Connection

• write down entire system for EP stationary point

• view Refinement as solution for subset of variables for subset of equations
Convergence Theorem by Applying NLBGS Theory

Relevant references include [9], [10], and [11]. Our next theorem is an application of a theorem from [11]

\[(\lambda_a + \gamma_a) - \Lambda \left(\frac{\int_{\Theta} t_a(\theta_a) \exp \left(\sum_{c=1}^{M} t_c(\theta_c) \cdot \lambda_c \right) d\theta}{\int_{\Theta} \exp \left(\sum_{c=1}^{M} t_c(\theta_c) \cdot \lambda_c \right) d\theta} \right) = 0\]

\[(\lambda_a + \gamma_a) - \Lambda \left(\frac{\int_{\Theta} u_a(y_a) f_a(y_a) \exp (u_a(y_a) \cdot \gamma_a) dx_a}{\int_{\Theta} f_a(y_a) \exp (u_a(y_a) \cdot \gamma_a) dx_a} \right) = 0\]

Thm. 1 (Convergence of Expectation Propagation Algorithms (Single Parameter Space)): If, when regarded as a function of \([\lambda^T, \gamma^T]^T\), the vector function set equal to zero in the system of equations (13) and (14) is an \(m\)-function, continuous, and surjective (onto) \(\mathbb{R}^{2V}\), the expectation propagation algorithm converges to the unique solution of (13) and (14) and thus the unique interior critical point of the constrained optimization problem.
References

