Large Scale Learning with String Kernels

Sören Sonnenburg
Fraunhofer FIRST.IDA, Berlin

joint work with
Gunnar Rätsch, Konrad Rieck
1. Introduction

2. Linadd Algorithm

3. Experiments
Outline

1. Introduction
2. Linadd Algorithm
3. Experiments
Large Scale Problems

- **Text Classification (Spam, Web-Spam, Categorization)**
 - Task: Given N documents, with class label ± 1, predict text type.

- **Security (Network Traffic, Viruses, Trojans)**
 - Task: Given N executables, with class label ± 1, predict whether executable is a virus.

- **Biology (Promoter, Splice Site Prediction)**
 - Task: Given N sequences around Promoter/Splice Site (label $+1$) and fake examples (label -1), predict whether there is a Promoter/Splice Site in the middle.

⇒ **Approach:** String kernel + Support Vector Machine
⇒ **Large N is needed to achieve high accuracy** (i.e. $N = 10^7$)
Formally

- **Given:**
 - N training examples $(x_i, y_i) \in (\mathcal{X}, \pm 1)$, $i = 1 \ldots N$
 - string kernel $K(x, x') = \Phi(x) \cdot \Phi(x')$

- **Examples:**
 - words-in-a-bag-kernel
 - k-mer based kernels (Spectrum, Weighted Degree)

- **Task:**
 - Train Kernelmachine on Large Scale Datasets, e.g. $N = 10^7$
 - Apply Kernelmachine on Large Scale Datasets, e.g. $N = 10^9$
String Kernels

- **Spectrum Kernel (with mismatches, gaps)**

 \[K(x, x') = \Phi_{sp}(x) \cdot \Phi_{sp}(x') \]

- **Weighted Degree Kernel (with shift)**

 \[k(s_1, s_2) = w_7 + w_1 + w_2 + w_2 + w_3 \]

For string kernels \(\mathcal{X} \) discrete space and \(\Phi(x) \) sparse
Kernel Machine Classifier:

\[f(x) = \text{sign} \left(\sum_{i=1}^{N} \alpha_i y_i k(x_i, x) + b \right) \]

To compute output on all \(M \) examples:

\[\forall j = 1, \ldots, M : \sum_{i=1}^{N} \alpha_i y_i k(x_i, x_j) + b \]

Computational effort:

- Single \(\mathcal{O}(NT) \) (\(T \) time to compute the kernel)
- All \(\mathcal{O}(NMT) \)

\(\Rightarrow \) Costly!

\(\Rightarrow \) Used in training and testing - worth tuning.

\(\Rightarrow \) How to further speed up if \(T = \text{dim}(\mathcal{X}) \) already linear?
Outline

1. Introduction
2. Linadd Algorithm
3. Experiments
Linadd Speedup Idea

Key Idea: Store w and compute $w \cdot \Phi(x)$ efficiently

$$\sum_{i=1}^{N} \alpha_i y_i k(x_i, x_j) = \sum_{i=1}^{N} \alpha_i y_i \Phi(x_i) \cdot \Phi(x_j) = w \cdot \Phi(x_j)$$

When is that possible?

1. w has low dimensionality and sparse (e.g. 4^8 for Feature map of Spectrum Kernel of order 8 DNA)
2. w is extremely sparse although high dimensional (e.g. 10^{14} for Weighted Degree Kernel of order 20 on DNA sequences of length 100)

Effort: $\mathcal{O}(MT') \Rightarrow$ Potential speedup of factor N
Technical Remark

Treating \(w \)

- \(w \) must be accessible by some index \(u \) (i.e. \(u = 1 \ldots 4^8 \) for 8-mers of Spectrum Kernel on DNA or word index for word-in-a-bag kernel)

- Needed Operations
 - Clear: \(w = 0 \)
 - Add: \(w_u \leftarrow w_u + v \) (only needed \(|W|\) times per iteration)
 - Lookup: obtain \(w_u \) (must be highly efficient)

- Storage
 - **Explicit Map** (store dense \(w \)); Lookup in \(\mathcal{O}(1) \)
 - **Sorted Array** (word-in-bag-kernel: all words sorted with value attached); Lookup in \(\mathcal{O}(\log(\sum_u I(w_u \neq 0))) \)
 - **Suffix Tries, Trees**; Lookup in \(\mathcal{O}(K) \)
Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations

- clear of \(w \)
- add of all k-mers \(u \) from string \(x \) to \(w \)
- lookup of all k-mers \(u \) from \(x' \) in \(w \)

<table>
<thead>
<tr>
<th></th>
<th>Explicit map</th>
<th>Sorted arrays</th>
<th>Tries</th>
<th>Suffix trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>(\mathcal{O}(</td>
<td>\Sigma</td>
<td>^d))</td>
<td>(\mathcal{O}(1))</td>
</tr>
<tr>
<td>add</td>
<td>(\mathcal{O}(l_x))</td>
<td>(\mathcal{O}(l_x \log l_x))</td>
<td>(\mathcal{O}(l_xd))</td>
<td>(\mathcal{O}(l_x))</td>
</tr>
<tr>
<td>lookup</td>
<td>(\mathcal{O}(l_{x'}))</td>
<td>(\mathcal{O}(l_x + l_{x'}))</td>
<td>(\mathcal{O}(l_{x'}d))</td>
<td>(\mathcal{O}(l_{x'}))</td>
</tr>
</tbody>
</table>

Conclusions

- Explicit map ideal for small \(|\Sigma| \)
- Sorted Arrays for larger alphabets
- Suffix Arrays for large alphabets and order (overhead!)
Support Vector Machine

Linadd **directly applicable** when applying the classifier.

\[
f(x) = \text{sign}\left(\sum_{i=1}^{N} \alpha_i y_i k(x_i, x) + b\right)
\]

Problems

- \(w\) may still be huge \(\Rightarrow\) fix by not constructing whole \(w\) but only blocks and computing batches

What about training?

- general purpose QP-solvers, Chunking, SMO
- optimize kernel (i.e. find \(O(L)\) formulation, where \(L = \text{dim}(\mathcal{X})\))
- **Kernel Caching infeasable**
 (for \(N = 10^6\) only 125 kernel rows fit in 1GiB memory)

\(\Rightarrow\) **Use linadd again: Faster + needs no kernel caching**
Analyzing Chunking SVMs (GPDT, SVM$^\text{light}$):

Training algorithm (chunking):

\[
\text{while optimality conditions are violated do} \\
\quad \text{select } q \text{ variables for the working set.} \\
\quad \text{solve reduced problem on the working set.} \\
\text{end while}
\]

- At each iteration, the vector \(f \), \(f_j = \sum_{i=1}^{N} \alpha_i y_i k(x_i, x_j) \), \(j = 1 \ldots N \) is needed for checking termination criteria and selecting new working set (based on \(\alpha \) and gradient w.r.t. \(\alpha \)).
- Avoiding to recompute \(f \), most time is spend computing “linear updates” on \(f \) on the working set \(W \)

\[
f_j \leftarrow f_j^{\text{old}} + \sum_{i \in W} (\alpha_i - \alpha_i^{\text{old}}) y_i k(x_i, x_j)
\]
Use \textit{linadd} to compute updates.

Update rule: \(f_j \leftarrow f_j^{old} + \sum_{i \in W} (\alpha_i - \alpha_i^{old}) y_i k(x_i, x_j) \)

Exploiting \(k(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j) \) and \(w = \sum_{i=1}^{N} \alpha_i y_i \Phi(x_i) \):

\[
 f_j \leftarrow f_j^{old} + \sum_{i \in W} (\alpha_i - \alpha_i^{old}) y_i \Phi(x_i) \cdot \Phi(x_j) = f_j^{old} + w^W \cdot \Phi(x_j)
\]

\((w^W \text{ normal on working set})\)

Observations

\begin{itemize}
 \item \(q := |W| \) is very small in practice \(\Rightarrow \) can effort more complex \(w \) and clear, add operation
 \item lookups dominate computing time
\end{itemize}
Recall we need to compute updates on f (effort $c_1|W|LN$):

$$f_j \leftarrow f_j^{old} + \sum_{i \in W} (\alpha_i - \alpha_i^{old}) y_i k(x_i, x_j) \text{ for all } j = 1 \ldots N$$

Modified SVM$^\text{light}$ using “LinAdd” algorithm (effort $c_2\ell LN$, ℓ Lookup cost)

$$f_j = 0, \quad \alpha_j = 0 \text{ for } j = 1, \ldots, N$$

for $t = 1, 2, \ldots$ do

- Check optimality conditions and stop if optimal, select working set W based on f and α, store $\alpha^{old} = \alpha$
- solve reduced problem W and update α
- clear w
- $w \leftarrow w + (\alpha_i - \alpha_i^{old}) y_i \Phi(x_i)$ for all $i \in W$
- update $f_j = f_j + w \cdot \Phi(x_j)$ for all $j = 1, \ldots, N$

end for

Speedup of factor \(\frac{c_1}{c_2 \ell} |W| \)
Parallelization

\[f_j = 0, \alpha_j = 0 \text{ for } j = 1, \ldots, N \]

for \(t = 1, 2, \ldots \) do

Check optimality conditions and stop if optimal, select working set \(W \) based on \(f \) and \(\alpha \), store \(\alpha^{old} = \alpha \)

solve reduced problem \(W \) and update \(\alpha \)

clear \(w \)

\[w \leftarrow w + (\alpha_i - \alpha_i^{old})y_i\Phi(x_i) \text{ for all } i \in W \]

update \(f_j = f_j + w \cdot \Phi(x_j) \) for all \(j = 1, \ldots, N \)

end for

Most time is still spent in update step \(\Rightarrow \) Parallize!

- transfer \(\alpha \) (or \(w \) depending on the communication costs and size)
- update of \(f \) is divided into chunks
- each CPU computes a chunk of \(f_I \) for \(I \subset \{1, \ldots, N\} \)
Outline

1. Introduction
2. Linadd Algorithm
3. Experiments
Datasets

- Web Spam
 - Negative data: Use Webb Spam corpus
 http://spamarchive.org/gt/ (350,000 pages)
 - Positive data: Download 250,000 pages randomly from the web (e.g. cnn.com, microsoft.com, slashdot.org and heise.de)
 - Use spectrum kernel $k = 4$ using **sorted arrays** on 100,000 examples train and test (average string length 30Kb, 4 GB in total, 64bit variables \Rightarrow 30GB)
Web Spam results

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>100</th>
<th>500</th>
<th>5,000</th>
<th>10,000</th>
<th>20,000</th>
<th>50,000</th>
<th>70,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec</td>
<td>2</td>
<td>97</td>
<td>1977</td>
<td>6039</td>
<td>19063</td>
<td>94012</td>
<td>193327</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LinSpec</td>
<td>3</td>
<td>255</td>
<td>4030</td>
<td>9128</td>
<td>11948</td>
<td>44706</td>
<td>83802</td>
<td>107661</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>89.59</td>
<td>92.12</td>
<td>96.36</td>
<td>97.03</td>
<td>97.46</td>
<td>97.83</td>
<td>97.98</td>
<td>98.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94.37</td>
<td>97.82</td>
<td>99.11</td>
<td>99.32</td>
<td>99.43</td>
<td>99.59</td>
<td>99.61</td>
<td>99.64</td>
<td></td>
</tr>
</tbody>
</table>

Speed and classification accuracy comparison of the spectrum kernel without (Spec) and with Linadd (LinSpec)
Splice Site Recognition

- Negative Data: 14,868,555 DNA sequences of fixed length 141 base pairs
- Positive Data: 159,771 Acceptor Splice Site Sequences
- Use WD kernel $k = 20$ (using Tries) and spectrum kernel $k = 8$ (using explicit maps) on 10,000,000 train and 5,028,326 examples
Linadd for WD kernel

For linear combination of kernels:

\[
\sum_{j \in W} (\alpha_j - \alpha_j^{old}) y_j k(x_i, x_j) \left(O(Ld | W | N) \right)
\]

use one tree of depth \(d \) per position in sequence

for Lookup use traverse one tree of depth \(d \) per position in sequence

Example \(d = 3 \):

output for \(N \) sequences of length \(L \) in \(O(Ld \cdot N) \)

\(d \) depth of tree \(\Delta \) degree of WD kernel

AAAATTTATGAAATTTATTTTCAAGTGCTGATGGAAACCGGAGAAAGAA
Spectrum Kernel on Splice Data

Number of training examples (logarithmic)

SVM training time in seconds (logarithmic)

Spec−Precompute
Spec−orig
Spec−linadd 1CPU
Spec−linadd 4CPU
Spec−linadd 8CPU
Weighted Degree Kernel on Splice Data

![Graph showing SVM training time in seconds versus number of training examples (logarithmic)]
Splice Site Recognition

More data helps

<table>
<thead>
<tr>
<th>N</th>
<th>auROC</th>
<th>auPRC</th>
<th>N</th>
<th>auROC</th>
<th>auPRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>75.55</td>
<td>3.94</td>
<td>200,000</td>
<td>96.57</td>
<td>53.04</td>
</tr>
<tr>
<td>1,000</td>
<td>79.86</td>
<td>6.22</td>
<td>500,000</td>
<td>96.93</td>
<td>59.09</td>
</tr>
<tr>
<td>5,000</td>
<td>90.49</td>
<td>15.07</td>
<td>1,000,000</td>
<td>97.19</td>
<td>63.51</td>
</tr>
<tr>
<td>10,000</td>
<td>92.83</td>
<td>25.25</td>
<td>2,000,000</td>
<td>97.36</td>
<td>67.04</td>
</tr>
<tr>
<td>30,000</td>
<td>94.77</td>
<td>34.76</td>
<td>5,000,000</td>
<td>97.54</td>
<td>70.47</td>
</tr>
<tr>
<td>50,000</td>
<td>95.52</td>
<td>41.06</td>
<td>10,000,000</td>
<td>97.67</td>
<td>72.46</td>
</tr>
<tr>
<td>100,000</td>
<td>96.14</td>
<td>47.61</td>
<td>10,000,000</td>
<td>96.03*</td>
<td>44.64*</td>
</tr>
</tbody>
</table>
Conclusions

- General speedup trick (clear, add, lookup operations) for string kernels
- Shared memory parallelization, able to train on 10 million human splice sites
- Linadd gives speedup of factor 64 (4) for Spectrum (Weighted Degree) kernel and 32 for MKL
- 4 CPUs further speedup of factor 3.2 and for 8 CPU factor 5.4
- Parallelized 8 CPU linadd gives speedup of factor 125 (21) for Spectrum (Weighted Degree) kernel, up to 200 for MKL

Discussion

- State-of-the-art accuracy
- Could we do better by encoding invariances?

Implemented in SHOGUN http://www.shogun-toolbox.org
To support the open source movement JMLR is proud to announce a new track on machine learning open source software.

Contributions to http://jmlr.org/mloss/ should be related to
- Implementations of machine learning algorithms,
- Toolboxes,
- Languages for scientific computing

and should include
- A 4 page description,
- The code,
- A recognised open source license.

Contribute to http://mloss.org the mloss repository!