Avoid playing learner and system off against each other

Ji-Ung Lee, Christian M. Meyer, Iryna Gurevych

Ubiquitous Knowledge Processing Lab
Technische Universität Darmstadt
https://www.informatik.tu-darmstadt.de/ukp/
Motivation

- Self-directed language learning is gaining popularity
- Challenges with the increasing number of learners

Hand-crafted exercises
- Requires experts
- Limited capacities
- High-quality exercises

Automatically generated exercises
- No user interaction required
- Large capacities
- Lesser-quality exercises
Motivation

- Self-directed language learning is gaining popularity
- Challenges with the increasing number of learners

Hand-crafted exercises
 - Requires experts
 - Limited capacities
 - High-quality exercises

Automatically generated exercises
 - No user interaction required
 - Large capacities
 - Lesser-quality exercises

Automatically generate high-quality exercises that
 - Match a learner’s skills and interests
 - Allow better system estimates
Automatically generate high-quality exercises that
- Match a learner’s skills and interests
- Allow better system estimates

How to create such an exercise generation system?
- Train an ML model which estimates the suitedness of an exercise according to a given learner profile
- This requires annotated training data consisting of:
 - An input exercise
 - A suitedness annotation for a given learner profile
Data Acquisition Scenarios

Teacher-based data acquisition
- Teachers annotate exercises by assessing them
- Expensive / time-consuming
- Difficult to get a lot of teachers
- Teachers can assess exercises of all proficiency levels

Learner-based data acquisition
- Learners “annotate” exercises by solving them
- Cheap / quick
- Easy to get a lot of learners
- Learners only can give implicit feedback about their own proficiency level (e.g. error-rate)
Data Acquisition Scenarios

Teacher-based data acquisition
- Teachers annotate exercises by assessing them
- Expensive / time-consuming
- Difficult to get a lot of teachers
- Teachers can assess exercises of all proficiency levels

Learner-based data acquisition
- Learners “annotate” exercises by solving them
- Cheap / quick
- Easy to get a lot of learners
- Learners only can give implicit feedback about their own proficiency level (e.g. error-rate)

More likely for crowd-sourcing or online learning
Online Learning Scenario

1) Automated tutor generates exercises
2) Learner solves exercises
3) Learner performance evaluation is used to improve the machine learning model (is the exercise suited?)
4) Re-iterate from 1)

Exercise score: 16/20
Online Learning Scenario

1) Automated tutor generates exercises
2) Learner solves exercises
3) Learner performance evaluation is used to improve the machine learning model (is the exercise suited?)
4) Re-iterate from 1)

Exercise score: 16/20

Learner performance provides feedback about the suitedness of the exercise.
Acquisition Bottleneck

Requirements for creating (sufficiently) huge datasets

- Big source of unlabeled data (any arbitrary exercise)

- Crowd-sourcing
 - Learners as annotators: Learnersourcing
 - Every learner is an expert of their own proficiency

- Active machine learning
 - Reduce the number necessary data by sampling intelligently
 - Has been shown to be effective for crowd-sourcing
Acquisition Bottleneck

Requirements for creating (sufficiently) huge datasets

- Big source of unlabeled data
- Crowd-sourcing
 - Learners as annotators: Learnersourcing [3]
 - Every learner is an expert of their own proficiency
- Active machine learning
 - Reduce the number necessary data by sampling intelligently
 - Has been shown to be effective for crowd-sourcing [4, 5]

Figure 1: The pool-based active learning cycle.
Acquisition Bottleneck

Requirements for creating (sufficiently) huge datasets

- Big source of unlabeled data (any arbitrary exercise)
- Crowd-sourcing
 - Learners as annotators: Learnersourcing [3]
 - Every learner is an expert of their own proficiency
- Active machine learning
 - Reduce the number necessary data by sampling intelligently
 - Has been shown to be effective for crowd-sourcing [4, 5]

Active learning in a nutshell (picture from Settles, 2009)

Figure 1: The pool-based active learning cycle.

Sounds great, but ...
... avoid playing learner and system off against each other

Advantages of Active machine learning
- Active machine learning aims to improve the learning efficiency of the ML model
 - Models can be trained more efficiently with less data
 - This reduces the amount of required data

Consequences for crowd-sourcing
- Does not necessarily reduce annotation time
- More difficult annotations lead to more errors of the annotators
 - We may end up hindering a learner’s learning process
Explicit Use Case: C-tests

- Proposed by Klein-Braley and Raatz (1982)
- Gap every **second word** in a text by removing the **latter half**
- The first and last sentence have no gaps to provide some context
- Less ambiguous than cloze tests
Explicit Use Case: Suitedness

What is a suitable exercise?

▪ “Zone of proximal development” (Vygotsky, 1978)
▪ Guidance zone in which a learner is able to learn optimally
▪ Measure suitedness implicitly using the learner’s error-rate
▪ Our goal is to generate exercises fitting into the approximately optimal error-rate
Previous Work at UKP Lab

Task: Difficulty prediction of C-Tests

- Feature-based approach
- Gap-level difficulty prediction

Data

- 77 English C-Tests filled out by over 3,4k participants
- Provided by the Language Center of TU Darmstadt
- Each test has 20 gaps
- Each participant solved 5 tests
- 72 tests for training (1440 gaps)
- 5 tests for testing (100 gaps)
Predicting and manipulating the difficulty of text-completion exercises for language learning (Beinborn, 2016)

Features based on four dimensions

- Item dependency
 - Gap difficulty depends on the surrounding gaps

- Candidate ambiguity
 - Inspired from automated solving (Zweig et al, 2012)

- Word difficulty
 - Length, class, singular/plural, …

- Text difficulty
 - Readability features from all linguistic levels (Balakrishna, 2015)
Task Formalization

Research question
▪ Can we sample exercises which simultaneously help learner and model?

Learner objective
▪ Get exercises suited for their current skill level

Model objective
▪ Reduce the number of samples for predicting the gap difficulty
Experimental Set up

▪ Linear regression model
▪ Hand-crafted features (Beinborn, 2016)
▪ Upper bound performance (trained on all training examples): 0.24 RMSE

▪ Starts with a single example
▪ Increase training set by **one example per iteration**
▪ Sampling strategies:
 ▪ Random sampling (baseline)
 ▪ Uncertainty sampling
Results - Model Objective

- 100 iterations

- Simple uncertainty sampling already has a positive effect

- Quite close to the upper bound (0.24 RMSE)
Results - Learner Objective

- For both sampling strategies, the ordering of exercise difficulties is nearly random.

- This is far from starting with the easiest exercise.
Conclusion

Advantages

▪ Learnersourcing may reduce the workload on teachers
▪ Active machine learning may reduce the amount of required training data

But

▪ Random sampling and uncertainty sampling both do not care about the learner
▪ Brings the risk to harm a learner’s learning process

Unethical reduction of learners to mere labelers
Conclusion

Advantages
▪ Learnersourcing may reduce the workload on teachers
▪ Active machine learning may reduce the amount of required training data

But
▪ Random sampling and uncertainty sampling both do not care about the learner
▪ Bring:

How can we still utilize the benefits of active machine learning?

Unethical reduction of learners to mere labelers
Ongoing Work

Methods which satisfy learner and model objective
 ▪ Improve learner and model in an online learning set up
 ▪ This is a difficult challenge

Extension to other use cases
 ▪ Currently: self-directed language learning
 ▪ Means to improve intelligent tutoring systems interactively
 ▪ May also be used to train personalized systems (e.g. recommender systems)
Thank you for listening!

https://ticary.com/2017/12/12/what-is-nlp.html
References

References

References

Active Machine Learning for Learnersourcing

- Standard active machine learning approaches do not care about a learner’s goals
 - Learners are reduced to mere labelers
- May sample unfitting exercises for the learner (e.g. too easy, too difficult)
 - This may harm their learning process

How can we still utilize the benefits of active machine learning?