FSADA
an anomaly-detection approach

Viktor Jovanoski, Jan Rupnik
Jožef Stefan International Postgraduate School - Jožef Stefan Institute
September 2018
Roadmap

- Anomaly detection
 - Overview
 - Real-world experience, needs and challenges

- Paper contribution
 - General methodology/architecture for anomaly detection

- Future work
 - Incident detection, evaluation, prediction
Anomaly detection
What is anomaly

- “Anomaly is data-point that is significantly different from the majority the data”
- Different types - numeric, categorical, texts
- Potentially huge volumes - e.g. sensoric data
- Diverse velocities - from milliseconds to days
- Different latencies - from milliseconds to hours
Practical requirements

- Handle huge amounts of data
- Handle complex analyses
- As real-time as possible
- **Actionability**
Questions with progressive difficulty levels

- Is current state anomalous?
- Is current state critical?
- Which areas of the current state are the main suspects?
- What is the root cause?
- Which areas are causing the most damage
 - Directly, indirectly
- Which area should operators start addressing first?
- Given the current state is there a higher probability of problems in the near future?
Practical experience

- **Manufacturing**
 - Shop-floor
 - Logistics
 - Planing

- **IT infrastructure**
 - Servers
 - Services (multiple servers, elastic deployments, complex dependencies)
 - Network communications
 - Database and other storage (loads, volumes, response times)
 - Security
State-of-the-art

- KDD 2018
 - Several papers, domain-specific problems
 - Strong niche algorithms, with enhancements
 - Work in several phases
 - Built on top of prior, simpler work
 - Feature-engineering based on expert feedback
 - Strong feedback loop
 - Evaluation
 - Active learning
Paper contribution:

FSADA Architecture
Last year’s paper

- SiKDD 2017
- Domain-specific problem - analysing logs from servers
- Need for expanded scope
 - Different algorithms, different data streams
 - Streaming scenarios
 - Alert feedback
 - Active learning
 - Cloud-enabled
Full-Spectrum Anomaly Detection Architecture

- FSADA
 - Many design iterations and inputs
- Main features
 - Streams, big data
 - Cloud-ready, scalable
 - Diverse data, diverse algorithms
 - Signals (low-level alerts) and incidents (high-level alerts)
 - Background knowledge
 - Clearly defined place for feedback and active learning
Architecture
Future work

Incidents, root causes, predictions
Further work - architecture

- System simulations and predictions
- Diverse background knowledge
Goal

- Improve analyses across data-source
 - Correlations
 - Simulations
 - Predictions
- Use more structure that is available in the data
- Use more background knowledge

Mimic some skills that people in the “operation room” use when they stare at multiple monitors showing data from diverse data sources.
Thank you