Bin analysis of genome-wide association study

N. Omont, K. Forner, M. Lamarine, G. Martin, F. Képès, J. Wojcik

Bin analysis of genome-wide study

- Data
 - What is a Genome-wide association study
- Analysis
 - Multiple testing problem
 - Method
- Results

Transmission and recombination

Haplotype blocks (HB)

Data – association study

Genetic disease

Variants of DNA causes disease:

- o Simple case (« mendelian »):
 - One change in DNA
 - Simplest case: One letter change in DNA
- o Complex case:
 - Many changes
 - Interaction of changes
 - Interaction with environment

Genetic disease

- How to find the variant(s) causing the disease? By looking for a correlation of a portion of DNA with a disease:
 - Linkage studies: whole families.
 - Association studies: independent individuals from the same population.

Association study: example

Association Study: cost problem

 Reading (sequencing) entirely the 2 DNA words of an individual is too expensive.

Single Nucleotide Polymorphism

- Predefined positions on DNA where different letters are found in a population.
 - For SNPs used, 2 letters among the 4 possible are found.
 - Letters are arbitrarily noted 'a' and 'A'.
- ⇒ An individual holds either:
 - 'aa'
 - 'aA' or 'Aa', but distinction is impossible
 - 'AA'.

Association study: example

Association study: example

Characteristic:	0	0	0	0	0		0	0
	Ind 1	Ind 2	Ind 3	Ind 4	Ind 5		Ind n-1	Ind n
+	aA	aa	aa	Aa	Aa		aa	Aa
Chr. A	ВВ	Bb	ВВ	bB	ВВ		ВВ	bb
	сС	СС	СС	cC	cC	•••	СС	Сс
Chr. B	Dd	DD	dD	dD	dD		dD	dD

The Serono association study

- Multiple Sclerosis: Complex disease
 - Concordance rate between twins: 15-20 %
- 3 collections of 300 cases/300 control
- 100,000 SNPs
- Cost: > 1,000 € per individual

Analysis

- o Is there an association with the disease?
- o If yes, where?

Method

The ideal vision

FDR estimation (no control)

- o $\widehat{\pi_0}$: Proportion of bins under the null hypothesis assumed to be 1.0.
- o B: Number of bins
- A : Level at which FDR is computed
- $\circ \pi_h$: P-value of bin b

$$FDR(\theta) = \frac{\widehat{\pi_0}\theta B}{\operatorname{card}(\{b|\pi_b < \theta\})}$$

Multiple testing problem

Assuming 1 association with p-value=1E-5

 Tested with 1,000 SNP under null hypothesis:

```
FDR = 1 % [ = 1E-5*1E3 / (1 + 1E-5*1E3) ] \Rightarrow OK
```

 Tested with 1,000,000 SNP under null hypothesis:

```
FDR = 91 % [= 1E-5 * 1E6 / (1 + 1E-5*1E6)] 

\Rightarrow No association detected
```

Multiple testing problem

- Linkage disequilibrium ⇒ 2 neighbour SNP truly associated: p-value=1E-5
- o Independent testing:

$$FDR = 83 \% [= 1E-5 * 1E6 / (2+1E-5*1E6)]$$

- ⇒ No association detected
- o Simultaneous testing:

```
new p-value = c^2(2*invc^2(1E-5,1),2) = 3.4E-9

FDR = 0,3% [= 3.4E-9 * 1E6 / (1+3.4E-9 *1E6)]

\Rightarrow OK
```

Bin definition

- o Haplotype blocks:
 - Unknown
 - Population dependent
 - Not adapted to functional analysis
 - ⇒ Practically infeasible

Bin definition

o Gene:

- (Relatively) well defined
- Population independent
- Adapted to functional analysis.

But:

- Generally larger than haplotype blocks
 Loss of power
- Boundary accross haplotype blocks
 Not independent.

Bin definition: Loss of power example

- Too large bin definition: Assuming bin with 9 SNP:
 - 2 associated SNP: p-value=1E-5
 - 7 unassociated SNP: p-value=1
- o Results:
 - ⇒ New p-value = χ^2 (2*inv χ^2 (1E-5,1),9) = 1.1 E-5
 - \Rightarrow FDR = 92 %
 - ⇒ No association detected

Bin definition: Loss of power example

- If all SNPs are tested by 9:
 - Only 1,000,000/9 = 111,111 tests
 - \Rightarrow FDR = 56 %
- \Rightarrow FDR reduced of 1/3.
 - ⇒ Significant difference before starting costly experiments

Statistical test:

- Likelihood ratio test
 - Naive: SNPs are independent
 - Two-SNP: each SNP is dependent on the 2 SNPs directly on its sides.
- o Collection design:
 - Each collection independently
 - Independence of each population

Estimation

- o Asymptotic p-values:
 - Badly fit tables
 - Missing value and error model
- o Exact p-values:
 - Not tractable given the model
- o Empirical p-values:
 - Accurate control of error

Results

Results: bins

Distribution of the number of SNP per bin:

P-value distribution

p-value (highest value of for of the 10 bins)

FDR: FDR vs p-value

(3 collection design, thick: naive, thin: two-SNP)

Number of bins selected

o FDR threshold 5%:

Collection(s)	L_3	L_2
A	3	2
B	3	6
C	2	2
A+B+C	4	6

o FDR thres. 50%:

Collection(s)	L_3	L_2
A B	6 14	6 7
C $A+B+C$	6 20	28 33

FDR overestimation

- Known true positives
 - ⇒ FDR of subset of bins excluding the known true-positives is overestimated
 - ⇒ New estimation of FDR:

Collection(s)	L_3	L_2
A	6	6
B	14	7
C	6	28
A+B+C	20	33

Collection(s)	L_3	L_2
A	2	0
B	1	1
C	0	0
A+B+C	8	10

Conclusion

- o Biological results:
 - Meaningful but insufficient compared to the investment
 - Complex diseases remain complex
 - Gene-gene interaction intractable
 - Heterogeneity of cases
 - Sample size problem

Conclusion

- O A new method:
 - Computationally tractable
 - Rigorously estimating the FDR
 - Adapted to functional analysis
 - Taking advantage of the structure of the data

Bin analysis of genome-wide association study

N. Omont, K. Forner, M. Lamarine, G. Martin, F. Képès, J. Wojcik

Nicolas Omont

Decision Mathematics Consultant nicolas.omont@artelys.com

