Nuance Reasoning Framework

Prateek Jain, Peter Z Yeh, Ezra Story, Julien Villemure, David Martin, William Jarrold
Introduction

- Principal Research Engineer at Nuance Research Lab in Sunnyvale, CA, USA

- Part of group working on knowledge representation and reasoning

- Lab does applied and foundational research in the area of AI & NLP

- ~ 15 researchers and engineers with diverse backgrounds KR, Semantic Web, NLP and Dialog.
Motivation

- Imagine an automotive assistant embedded in your car which can assist you with finding parking.

- You are driving on a rainy day and have to find parking near downtown until 5pm.

- To complete this request, the automotive assistant must consider many implicit factors – time, location, preferences.
Motivation

– A specialized reasoning module is necessary to reason over the implicit factors – time, location, preferences

– Need for a framework which allows
 – Plugging in specialized reasoners
 – Identify which reasoners to invoke
 – Combine response from different reasoners
AI Contextual Reasoning Framework
Overview

Nuance Reasoning Framework
Performs contextual reasoning to infer implicit constraints, needs, etc. to deliver personalized results.

Intelligent Knowledge
Considers explicit constraints and output of reasoning to retrieve best results that fulfill the user’s request.

Contextual Reasoner
- POI
- Parking
- Fuel

Spatial Reasoner
- Restaurants

...
Nuance Reasoning Framework

Performs reasoning over explicit and contextual information to personalize and deliver high quality results

Key Features

- **Flexible Framework**: Allows a wide range of reasoning techniques to be easily integrated and accessed via a unified interface.

- **Reasoner Arbitration**: Automatically decides which reasoners to use.

- **Consistency Checker**: Merges inferences from multiple reasoners into a consistent conclusion.

- **Pre-Built Reasoning Engines**: Provides pre-built reasoning engines to support frequently occurring reasoning requirements such as:
 - Spatial Reasoning
 - Temporal Reasoning
 - Contextual Reasoning

Semantic Query: “Find parking near the stadium”
Parking (x) & Stadium (y) & Near (x, y)

New Query
Parking (x) & Stadium (y) & isCovered (x, true) & Distance (x, y, z) & (z < 0.5mi)

Precipitation: Yes
Future Direction

– Ongoing development of additional reasoners

– Machine learning based arbitration/mediation strategies

– Richer representation of contextual information