EMERGENCE

SOME FEATURES:

Convergence to a consensus.

Local Averaging

(Decentralized) Mechanism

Learning (inductive)

Agents

Quantitative

THREE EXAMPLES:

Primitive Language

Flocking

Price Systems
Example: Origin of a primitive language. This was a joint work with F. Cucker and D-X. Zhou and can be found on my TTI-C website.

A language is a function \(f : M \rightarrow S \) where \(M \) is a finite set interpreted as a space of meanings and \(S \) is a convex set in Euclidean space interpreted as a space of sounds (and especially vowel sounds).

It is supposed that there are \(k \) linguistic agents, which we label as \(i \) going from 1 to \(k \).

The states of this system are denoted by

\[
(f_1, f_2, \ldots, f_k) \quad \text{in} \quad L \times L \times L \ldots \times L = L^k
\]

Where \(f_i \) is the language of agent \(i \) and \(L \) is the space of languages.
To describe a dynamics $T : L \xrightarrow{\kappa} L$ we use a k by k matrix of non-negative entries interpreted as the measure of linguistic encounters between agents and not necessarily symmetric. The matrix should have an irreducibility property. One could equivalently use a graph.

T is defined by local averaging relative to the linguistic encounter matrix. Moreover the dynamics has a learning mechanism. Learning theory uses a set of examples which in this case amounts to learning a language. The examples are meaning-sound pairs (m, s) in $M \times S$ emitted by each agent and transmitted by the encounter matrix to the listening agents.

Theorem. The dynamics starting with an arbitrary initial set of k languages converges to a common language.

Remark. This result confirms numerical simulations of several linguists as Bill Wang.
MECHANISMS

Learning theory uses examples or data:

For $i = 1, \ldots, m$, (x_i, y_i^*) in $X \times Y$, $Y = \mathbb{R}$ (the reals).

It is inductive learning.

Find an appropriate function $f : X \rightarrow Y$ which mimics $f(x_i^*) = y_i^*$.

Here is a version of curve fitting or interpolation.

Learning theory combines approximation theory and probability.

Goal: combine learning theory with local averaging to obtain a quantitative model of emergence, with universality.

Eventually one may obtain some universal laws of emergence.

Learning theory can supply a mechanism, as it relies on examples.

Moreover there exists a rather developed subject of learning theory in the last decades.
With Felipe Cucker,

Flocking. Birds $i = 1, \ldots, k$

Adjacency matrix $A = (a_{ij})$ where

$$a_{ij} = \frac{1}{(1 + \|x_i - x_j\|^2)^eta}, \quad x_i \in \mathbb{R}^3, \quad \beta \geq 0$$

"Laplacian" $L = D - A$, $D_{ii} = \sum_{j=1}^{k} a_{ij}$

Equations of flocking

$X' = v$

$v' = -L v$

Derived from

$$v_i(t+h) - v_i(t) = h \sum_{j=1}^{k} a_{ij} (v_j - v_i)$$

Question. Is there flocking?

Do solutions $v_i(t)$ converge to a common $v^* \in \mathbb{R}^3$?
Theorem for the equations of flocking, one has existence and uniqueness for all time.

If $\beta < \frac{1}{2}$, $v_i(t) \to v^* \in \mathbb{R}^3$ as $t \to \infty$, v^* independent of i, and $x_i - x_j \to \hat{x}_{i,j}$ as $t \to \infty$, so that the relative positions stay bounded.

If $\beta \geq \frac{1}{2}$ dispersal is possible. But flocking as above will occur provided certain explicit initial conditions are satisfied.
Suppose that G is a graph, defined by vertices and edges.

Let A be its adjacency matrix so that the entries satisfy

$$a(i, j) = 1 \text{ if } (i, j) \text{ is an edge and zero otherwise.}$$

Let D be the diagonal matrix defined by $d(i, i) = \sum_j a(i, j)$.

Then the Laplacian of G is

$$L = L(G) = D - A$$

The eigenvalues of L may be expressed by

$$0 = \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots$$

The Fiedler number $F = F(G) = \lambda_2$

Fact: $F \neq 0$ if and only if G is connected.

One extends these definitions to a general weighted graph

$a(i, j)$ (or such a matrix A).
For the flocking case F depends on the positions x and thus also on time. In fact if $F(x(t)) \geq \text{constant} > 0$ one obtains flocking; otherwise the birds disperse. This way the Fiedler number F is a crucial invariant for the study of emergence.

In the above we may see an extension of the flocking model to cases where some $a(i,j)$ could be zero and one relaxes the condition of a complete graph.
The Fiedler number is inspired by the Cheeger Theorem in differential geometry, and the second eigenvalue of the Laplace-Beltrami operator.
For the proof of the flocking theorem it is useful to consider x in X where X is the orthogonal space to the diagonal in the product space $\bigoplus_{i=1}^k (\mathbb{R}^3)^k$, and similarly v in V for the velocities.

Then the ordinary differential equations of flocking make sense in $X \times V$ and in this space flocking means $v(t) \rightarrow 0$ in V and $x(t) \rightarrow x^*$ in X as time goes to infinity.

Our conclusion in the flocking theorem above can be stated in these terms.
The first proposition in the proof is this.

Let the norm squared of $v(t)$ be denoted by N. Then

$$(d/dt)N(t) \leq (d/dt)N(0) \exp -t F^*(t)$$

where F^* is the minimum of the Fiedler numbers $F(s)$ over $0 \leq s \leq t$.

The proof goes by $d/dt N = -<Lv, v> \leq - F N$.

Divide by N and integrate etc.
FROM FLOCKING TO THE GENERAL EMERGENCE PROBLEM

Let \(X \) be some general Euclidean space.

Let \(V \) be the product space modulo the diagonal, just as before.

\[L : X \rightarrow M(\kappa \times \kappa) \text{ (the \(\kappa \) by \(\kappa \) matrices) satisfy:} \]

\[
F(x) = \min_{v \in V} \frac{\langle L(x)v, v \rangle}{\langle v, v \rangle} \geq \frac{1}{(1 + \|x\|^2)^\beta}
\]

The differential equations are:

\[
\frac{dx}{dt} = f(x, v)
\]

\[
\frac{dv}{dt} = -L(x)v
\]

Here we suppose \(\|f(x, v)\| \leq K \|v\|^d \)

THEOREM. If \(\beta < \frac{1}{2} \) there is emergence.

ie. \(v(t) \rightarrow 0 \), etc., etc.
THE PRICE ADJUSTMENT PROBLEM

Playing the role of the previous velocity we use a corresponding

"Belief of a price system", or

function \(p \) from commodity space to a space of prices. Every
economic agent will have at a given time such a belief.

A learning mechanism is based on signals of the form

\((c_i, p_i)\) which could be interpreted as offers, bids, and even
exchanges.

This is very preliminary and not in the framework of general
equilibrium theory. A space of economic characteristics as
wealth, utility and economic relations will be our new \(X \).