Temporal Query Answering in DL-Lite over Inconsistent Data

Camille Bourgaux1,2 & Anni-Yasmin Turhan1

1Technische Universität Dresden, 2Télécom ParisTech

16th International Semantic Web Conference
October 24th 2017, Vienna
Ontology-based query answering for situation recognition

Situation recognition for context-aware systems

Ontology-based query answering

TBox (Ontology) \mathcal{T}
General knowledge about the domain (how the system works...)

ABox (Data) \mathcal{A}
Specific knowledge (snapshot of the system)

Conjunctive Query q
Description of the situation

$\langle \mathcal{T}, \mathcal{A} \rangle \models q$?
situation recognition

Ex: list of servers almost overloaded
Ontology-based query answering for situation recognition

Ontology-based query answering

<table>
<thead>
<tr>
<th>TBox</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer ⊑ Server,</td>
</tr>
<tr>
<td>AppServer ⊑ Server,</td>
</tr>
<tr>
<td>WebServer ⊑ ¬AppServer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute(a, b), WebServer(a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjunctive Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃y Server(x) ∧ Execute(x, y)</td>
</tr>
</tbody>
</table>

⟨T, A⟩ |= q ?
Ontology-based query answering for situation recognition

Inconsistency-tolerant query answering

<table>
<thead>
<tr>
<th>TBox</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer ⊑ Server,</td>
<td>web servers are servers</td>
</tr>
<tr>
<td>AppServer ⊑ Server,</td>
<td>application servers are servers</td>
</tr>
<tr>
<td>WebServer ⊑ ¬AppServer</td>
<td>web and application servers are disjoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABox</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute(a, b), WebServer(a), AppServer(a)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjunctive Query</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃yServer(x) ∧ Execute(x, y)</td>
<td>retrieve servers that execute something</td>
</tr>
</tbody>
</table>

⟨T, A⟩ |= q?
Ontology-based query answering for situation recognition

Temporal query answering

TBox

<table>
<thead>
<tr>
<th>WebServer ⊑ Server,</th>
<th>web servers are servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppServer ⊑ Server,</td>
<td>application servers are servers</td>
</tr>
<tr>
<td>WebServer ⊑ ¬AppServer</td>
<td>web and application servers are disjoint</td>
</tr>
</tbody>
</table>

Sequence of ABoxes

<table>
<thead>
<tr>
<th>\mathcal{A}_1 : Execute(a, b), WebServer(a)</th>
<th>data at time point 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{A}_2 : Execute(a, c), WebServer(a)</td>
<td>data at time point 2</td>
</tr>
</tbody>
</table>

Temporal Conjunctive Query

$\text{Server}(x) \land \square \neg \exists y \text{Execute}(x, y)$ retrieve servers that always executed something

$$\langle \mathcal{T}, (\mathcal{A}_i)_{1 \leq i \leq 2} \rangle, 2 \models \phi ?$$ answer the query at time point 2
Goal: inconsistency-tolerant temporal query answering
Outline

1. Introduction
2. Preliminary notions
3. Temporal query answering over inconsistent data
4. Complexity analysis
5. Conclusion and perspectives
Inconsistency-tolerant semantics for knowledge bases

Repair

\subseteq-maximal subset of the ABox consistent with the TBox

<table>
<thead>
<tr>
<th>TBox</th>
<th>\mathcal{T}</th>
<th>ABox</th>
<th>\mathcal{A}</th>
<th>Repair 1</th>
<th>Repair 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer \sqsubseteq Server, AppServer \sqsubseteq Server, WebServer \sqsubseteq ¬AppServer</td>
<td>WebServer(a), AppServer(a), Execute(a, b)</td>
<td>WebServer(a), Execute(a, b)</td>
<td>AppServer(a), Execute(a, b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inconsistency-tolerant semantics for knowledge bases

Repair

\(\subseteq\)-maximal subset of the ABox consistent with the TBox

AR semantics (ABox Repair)

AR answer \(\iff\) answer in every repair

<table>
<thead>
<tr>
<th>TBox</th>
<th>ABox</th>
<th>Repair 1</th>
<th>Repair 2</th>
</tr>
</thead>
</table>
| WebServer \(\sqsubseteq\) Server,
AppServer \(\sqsubseteq\) Server,
WebServer \(\sqsubseteq\) \neg\ AppServer | WebServer\((a)\),
AppServer\((a)\),
Execute\((a, b)\) | WebServer\((a)\),
Execute\((a, b)\) | AppServer\((a)\),
Execute\((a, b)\) |

True under AR semantics

- Execute\((a, b)\)
- Server\((a)\)

False under AR semantics

- AppServer\((a)\)
- WebServer\((a)\)
Inconsistency-tolerant semantics for knowledge bases

Repair

\(\subseteq \)-maximal subset of the ABox consistent with the TBox

IAR semantics (Intersection ABox Repair)

IAR answer \(\Leftrightarrow \) answer in the intersection of all repairs

<table>
<thead>
<tr>
<th>TBox</th>
<th>ABox</th>
<th>Repair 1</th>
<th>Repair 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer (\sqsubseteq) Server, AppServer (\sqsubseteq) Server, WebServer (\sqsubseteq) (\neg)AppServer</td>
<td>WebServer((a)), AppServer((a)), Execute((a, b))</td>
<td>WebServer((a)), Execute((a,b))</td>
<td>AppServer((a)), Execute((a,b))</td>
</tr>
</tbody>
</table>

True under IAR semantics

Execute\((a, b) \)

False under IAR semantics

Server\((a) \)
AppServer\((a) \)
WebServer\((a) \)
Inconsistency-tolerant semantics for knowledge bases

Repair

\(\subseteq \)-maximal subset of the ABox consistent with the TBox

Brave semantics

brave answer \iff answer in some repair

<table>
<thead>
<tr>
<th>TBox</th>
<th>(T)</th>
<th>ABox</th>
<th>(A)</th>
<th>Repair 1</th>
<th>Repair 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer (\sqsubseteq) Server, AppServer (\sqsubseteq) Server, WebServer (\sqsubseteq) \neg \text{AppServer}</td>
<td>WebServer((a)), AppServer((a)), Execute((a, b))</td>
<td>WebServer((a)), Execute((a, b))</td>
<td>WebServer((a)), Execute((a, b))</td>
<td>AppServer((a)), Execute((a, b))</td>
<td></td>
</tr>
</tbody>
</table>

True under brave semantics

Execute(\(a, b \))
Server(\(a \))
AppServer(\(a \))
WebServer(\(a \))

False under brave semantics
Inconsistency-tolerant semantics

Connection to context awareness

\[\text{IAR-answers} \subseteq \text{AR-answers} \subseteq \text{brave-answers} \]

- **AR**: more natural, widely accepted
- **IAR**: for situations to be recognised with very high confidence
 - Example: “the server is not used”
- **brave**: for critical situations that have to be handled
 - Example: “the server is almost overloaded and runs a process that has an increasing workload”
Temporal query answering

- **Temporal knowledge base (TKB)** $\langle T, (A_i)_{0 \leq i \leq n} \rangle$
 - **global TBox**: domain knowledge holds eternally
 - **sequence of ABoxes**: data at different time points

- **Rigid** predicates: interpretations are not allowed to change over time

- **Temporal conjunctive query (TCQ)**: CQs + LTL operators

 Example:
 \[\phi_1 = \Box \neg \text{AlmostOverloaded}(x): \text{was almost overloaded at previous time point}\]
 \[\phi_2 = \Diamond \neg (\text{Critical}(x) \land \Box \neg \Diamond \neg \text{Critical}(x)): \text{has been in a critical situation twice}\]

 \text{Critical}(x) := \exists y \text{Execute}(x, y) \land \text{IncreasingWorkload}(y) \land \text{AlmostOverloaded}(x)\]
1 Introduction

2 Preliminary notions

3 Temporal query answering over inconsistent data

4 Complexity analysis

5 Conclusion and perspectives
Repairs of a temporal knowledge base

Temporal behaviour of predicates

Repair of a temporal knowledge base

“maximal subset of the data consistent with the TBox”

sequence of ABoxes \approx set of **timed-assertions**: $\{(\alpha, i) \mid \alpha \in \mathcal{A}_i\}$

<table>
<thead>
<tr>
<th>\mathcal{T}</th>
<th>\mathcal{A}_1 (time point 1)</th>
<th>\mathcal{A}_2 (time point 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer \sqsubseteq Server, AppServer \sqsubseteq Server, WebServer $\sqsubseteq \neg$ AppServer</td>
<td>WebServer(a), Execute(a, b)</td>
<td>WebServer(a), AppServer(a), Execute(a, c)</td>
</tr>
</tbody>
</table>
Repairs of a temporal knowledge base
Temporal behaviour of predicates

<table>
<thead>
<tr>
<th>\mathcal{T}</th>
<th>A_1 (time point 1)</th>
<th>A_2 (time point 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer \sqsubseteq Server, AppServer \sqsubseteq Server, WebServer $\sqsubseteq \neg$ AppServer</td>
<td>WebServer(a), Execute(a, b)</td>
<td>WebServer(a), AppServer(a), Execute(a, c)</td>
</tr>
</tbody>
</table>

First case: independent time points, no rigid predicates

→ contradictions only between timed-assertions with the same time point
Repairs of a temporal knowledge base
Temporal behaviour of predicates

First case: independent time points, no rigid predicates
→ contradictions only between timed-assertions with the same time point
→ repairs of TKB = sequences of repairs of KBs
Repairs of a temporal knowledge base
Temporal behaviour of predicates

<table>
<thead>
<tr>
<th>T</th>
<th>A₁ (time point 1)</th>
<th>A₂ (time point 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer ⊆ Server, AppServer ⊆ Server, WebServer ⊆ ¬AppServer</td>
<td>WebServer(a), Execute(a, b)</td>
<td>WebServer(a), AppServer(a), Execute(a, c)</td>
</tr>
</tbody>
</table>

Second case: some rigid predicates are not allowed to change over time
Repairs of a temporal knowledge base
Temporal behaviour of predicates

<table>
<thead>
<tr>
<th>T</th>
<th>A₁ (time point 1)</th>
<th>A₂ (time point 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer ⊑ Server, AppServer ⊑ Server, WebServer ⊑ ¬AppServer</td>
<td>WebServer(a), Execute(a, b)</td>
<td>WebServer(a), AppServer(a), Execute(a, c)</td>
</tr>
</tbody>
</table>

Second case: some rigid predicates are not allowed to change over time
→ contradictions between data at different time points possible
Repairs of a temporal knowledge base
Temporal behaviour of predicates

\[T \]
- WebServer \(\sqsubseteq \) Server,
- AppServer \(\sqsubseteq \) Server,
- WebServer \(\sqsubseteq \neg \) AppServer

\[A_1 \) (time point 1)\]
- WebServer\((a) \),
- Execute\((a, b) \)

\[A_2 \) (time point 2)\]
- WebServer\((a) \),
- AppServer\((a) \),
- Execute\((a, c) \)

Second case: some rigid predicates are not allowed to change over time
→ contradictions between data at different time points possible
→ repairs of TKB \(\neq \) sequences of repairs of KBs

\[A_1' \]
- WebServer\((a) \),
- Execute\((a, b) \)

\[A_2' \]
- WebServer\((a) \),
- Execute\((a, c) \)

\[A_1'' \]
- Execute\((a, b) \)

\[A_2'' \]
- AppServer\((a) \),
- Execute\((a, c) \)
AR, IAR and brave semantics defined in the natural way

<table>
<thead>
<tr>
<th>AR semantics</th>
<th>AR answer ⟷ answer in every repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAR semantics</td>
<td>IAR answer ⟷ answer in the intersection of all repairs</td>
</tr>
<tr>
<td>Brave semantics</td>
<td>brave answer ⟷ answer in some repair</td>
</tr>
</tbody>
</table>
Temporal query answering over inconsistent data

Example

<table>
<thead>
<tr>
<th>T</th>
<th>\mathcal{A}_1 (time point 1)</th>
<th>\mathcal{A}_2 (time point 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer \sqsubseteq Server, AppServer \sqsubseteq Server, WebServer \sqsubseteq \negAppServer</td>
<td>WebServer(a), Execute(a, b)</td>
<td>WebServer(a), AppServer(a), Execute(a, c)</td>
</tr>
</tbody>
</table>

True under semantics at time point 1

$\Box \exists y \text{Execute}(a, y)$

$\Box \text{Server}(a)$

$\Box \text{AppServer}(a)$

False under semantics at time point 1

$\Box \exists y \text{Execute}(a, y)$

$\Box \text{Server}(a)$

$\Box \text{AppServer}(a)$
Temporal query answering over inconsistent data

Example

Case without rigid predicates:

\(T \)
- WebServer \(\sqsubseteq \) Server,
- AppServer \(\sqsubseteq \) Server,
- WebServer \(\sqsubseteq \) \(\neg \)AppServer

\(A_1 \) (time point 1)
- WebServer\((a)\), Execute\((a, b)\)

\(A_2 \) (time point 2)
- WebServer\((a)\), AppServer\((a)\), Execute\((a, c)\)

\(A'_1 \)
- WebServer\((a)\), Execute\((a, b)\)

\(A'_2 \)
- WebServer\((a)\), Execute\((a, c)\)

\(A''_1 \)
- WebServer\((a)\), Execute\((a, b)\)

\(A''_2 \)
- AppServer\((a)\), Execute\((a, c)\)
Temporal query answering over inconsistent data

Example

\(T \)
- WebServer \(\sqsubseteq \) Server,
- AppServer \(\sqsubseteq \) Server,
- WebServer \(\sqsubseteq \neg \) AppServer

\(A_1 \) (time point 1)
- WebServer\((a)\),
- Execute\((a, b)\)

\(A_2 \) (time point 2)
- WebServer\((a)\),
- AppServer\((a)\),
- Execute\((a, c)\)

Case without rigid predicates: AR semantics

\(A'_1 \)
- WebServer\((a)\),
- Execute\((a, b)\)

\(A'_2 \)
- WebServer\((a)\),
- Execute\((a, c)\)

\(A''_1 \)
- WebServer\((a)\),
- Execute\((a, b)\)

\(A''_2 \)
- AppServer\((a)\),
- Execute\((a, c)\)

True under AR semantics at time point 1
- \(\Box \exists y \text{ Execute}(a, y) \)
- \(\Box \text{ Server}(a) \)

False under AR semantics at time point 1
- \(\Box \text{ AppServer}(a) \)
Temporal query answering over inconsistent data

Example

\(T \)
- WebServer \(\sqsubseteq \) Server,
- AppServer \(\sqsubseteq \) Server,
- WebServer \(\sqsubseteq \neg \) AppServer

\(A_1 \) (time point 1)
- WebServer(\(a \)), Execute(\(a, b \))

\(A_2 \) (time point 2)
- WebServer(\(a \)), AppServer(\(a \)), Execute(\(a, c \))

Case without rigid predicates: IAR semantics

\(A'_1 \)
- WebServer(\(a \)), Execute(\(a, b \))

\(A'_2 \)
- WebServer(\(a \)), Execute(\(a, c \))

\(A''_1 \)
- WebServer(\(a \)), Execute(\(a, b \))

\(A''_2 \)
- AppServer(\(a \)), Execute(\(a, c \))

True under IAR semantics at time point 1
\(\Box \exists y \) Execute(\(a, y \))

False under IAR semantics at time point 1
\(\Box \) Server(\(a \))
\(\Box \) AppServer(\(a \))
Temporal query answering over inconsistent data

Example

<table>
<thead>
<tr>
<th>(\mathcal{T})</th>
<th>(\mathcal{A}_1) (time point 1)</th>
<th>(\mathcal{A}_2) (time point 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer \sqsupseteq Server, AppServer \sqsupseteq Server, WebServer \sqsubseteq \neg \text{AppServer}</td>
<td>WebServer((a)), Execute((a, b))</td>
<td>WebServer((a)), AppServer((a)), Execute((a, c))</td>
</tr>
</tbody>
</table>

Case **without rigid predicates**: brave semantics

<table>
<thead>
<tr>
<th>(\mathcal{A}'_1)</th>
<th>(\mathcal{A}'_2)</th>
<th>(\mathcal{A}''_1)</th>
<th>(\mathcal{A}''_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer((a)), Execute((a, b))</td>
<td>WebServer((a)), Execute((a, c))</td>
<td>Execute((a, b))</td>
<td>AppServer((a)), Execute((a, c))</td>
</tr>
</tbody>
</table>

True under brave semantics at time point 1

\(\square \exists y \text{Execute}(a, y) \)

\(\square \text{Server}(a) \)

False under brave semantics at time point 1

\(\square \text{AppServer}(a) \)
Temporal query answering over inconsistent data

Example

\[T \]
- WebServer \sqsubseteq Server,
- AppServer \sqsubseteq Server,
- WebServer \sqsubseteq \neg\text{AppServer}

\[A_1 \text{ (time point 1)} \]
- WebServer(a), Execute(a, b)

\[A_2 \text{ (time point 2)} \]
- WebServer(a), AppServer(a), Execute(a, c)

With AppServer rigid:

\[A'_1 \]
- WebServer(a), Execute(a, b)

\[A'_2 \]
- WebServer(a), Execute(a, c)

\[A''_1 \]
- Execute(a, b)

\[A''_2 \]
- AppServer(a), Execute(a, c)
Temporal query answering over inconsistent data

Example

\[T \]

- WebServer \sqsubseteq Server,
- AppServer \sqsubseteq Server,
- WebServer \sqsubseteq \neg AppServer

\[A_1 \text{ (time point 1)} \]

- WebServer(a),
- Execute(a, b)

\[A_2 \text{ (time point 2)} \]

- WebServer(a),
- AppServer(a),
- Execute(a, c)

With AppServer rigid: AR semantics

\[A'_1 \]

- WebServer(a),
- Execute(a, b)

\[A'_2 \]

- WebServer(a),
- Execute(a, c)

\[A''_1 \]

- Execute(a, b)

\[A''_2 \]

- AppServer(a),
- Execute(a, c)

True under AR semantics at time point 1

- \[\Box \exists y \text{Execute}(a, y) \]
- \[\Box \text{Server}(a) \]

False under AR semantics at time point 1

- \[\Box \neg \text{AppServer}(a) \]
Temporal query answering over inconsistent data

Example

<table>
<thead>
<tr>
<th>T</th>
<th>A_1 (time point 1)</th>
<th>A_2 (time point 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer ⊑ Server, AppServer ⊑ Server, WebServer ⊑ ¬AppServer</td>
<td>WebServer(a), Execute(a, b)</td>
<td>WebServer(a), AppServer(a), Execute(a, c)</td>
</tr>
</tbody>
</table>

With AppServer rigid: IAR semantics

<table>
<thead>
<tr>
<th>A'_1</th>
<th>A'_2</th>
<th>A''_1</th>
<th>A''_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer(a), Execute(a, b)</td>
<td>WebServer(a), Execute(a, c)</td>
<td>Execute(a, b)</td>
<td>AppServer(a), Execute(a, c)</td>
</tr>
</tbody>
</table>

True under IAR semantics at time point 1

$\Box \exists y \text{Execute}(a, y)$

False under IAR semantics at time point 1

$\Box \text{Server}(a)$
$\Box \text{AppServer}(a)$
Temporal query answering over inconsistent data

Example

\(T \)
- WebServer ⊑ Server,
- AppServer ⊑ Server,
- WebServer ⊑ ¬AppServer

\(A_1 \) (time point 1)
- WebServer\((a)\), Execute\((a, b)\)

\(A_2 \) (time point 2)
- WebServer\((a)\), AppServer\((a)\), Execute\((a, c)\)

With AppServer rigid: brave semantics

\(A'_1 \)
- WebServer\((a)\), Execute\((a, b)\)

\(A'_2 \)
- WebServer\((a)\), Execute\((a, c)\)

\(A''_1 \)
- Execute\((a, b)\)

\(A''_2 \)
- AppServer\((a)\), Execute\((a, c)\)

True under brave semantics at time point 1
- □∃y Execute\((a, y)\)
- □Server\((a)\)
- □AppServer\((a)\)

False under brave semantics at time point 1
Idea: combining known algorithms to perform inconsistency-tolerant TCQ answering

Without rigid predicates: combine algorithms

- classical TCQ answering + atemporal IAR query answering = IAR temporal query answering

- classical TCQ answering + atemporal AR query answering = sound approximation of AR answers and AR temporal query answering for restricted queries (without operators \lor, \Diamond, \Diamond^-, U, S)

- not true for brave
TCQ answering over $\text{DL-Lite}_\mathcal{R}$ (\sim OWL 2 QL) TKBs

What we did
- complete the complexity picture for the classical semantics
- establish the complexity of inconsistency-tolerant TCQ answering
 - 3 inconsistency-tolerant semantics
 - 3 cases depending on the rigid predicates allowed
 - data and combined complexity
Complexity analysis
Completing the complexity picture for the classical semantics

Combined complexity of TCQ answering under classical semantics

- known result: \textbf{PSpace-complete} if \textit{negation} allowed in the query

- without negation: combined complexity drops to \textbf{NP-complete}

- cases with rigid predicates reduced to the case without rigid predicates by adding a set of assertions to every ABox
Complexity analysis
Complexity of TCQ answering over DL-Lite\(\mathcal{R}\) TKB

<table>
<thead>
<tr>
<th></th>
<th>classical</th>
<th>AR</th>
<th>IAR</th>
<th>brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>atemporal</td>
<td>in P</td>
<td>coNP-c</td>
<td>in P</td>
<td>in P</td>
</tr>
<tr>
<td>no rigid predicate</td>
<td>in P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts only</td>
<td>in P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts and roles</td>
<td>in P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data complexity

<table>
<thead>
<tr>
<th></th>
<th>classical</th>
<th>AR</th>
<th>IAR</th>
<th>brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>atemporal</td>
<td>NP-c</td>
<td>(\Pi^p_2)-c</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>no rigid predicate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts and roles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combined complexity
Complexity analysis

Complexity of TCQ answering over DL-Lite\(^R\) TKB

<table>
<thead>
<tr>
<th></th>
<th>classical</th>
<th>AR</th>
<th>IAR</th>
<th>brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>atemporal</td>
<td>in P</td>
<td>coNP-c</td>
<td>in P</td>
<td>in P</td>
</tr>
<tr>
<td>no rigid predicate</td>
<td>in P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts only</td>
<td>in P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts and roles</td>
<td>in P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data complexity

<table>
<thead>
<tr>
<th></th>
<th>classical</th>
<th>AR</th>
<th>IAR</th>
<th>brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>atemporal</td>
<td>NP-c</td>
<td>(\Pi^p_2)-c</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>no rigid predicate</td>
<td>NP-c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts only</td>
<td>NP-c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid concepts and roles</td>
<td>NP-c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combined complexity

<table>
<thead>
<tr>
<th></th>
<th>classical</th>
<th>AR</th>
<th>IAR</th>
<th>brave</th>
</tr>
</thead>
</table>
Complexity analysis
Complexity of TCQ answering over DL-Lite\textsubscript{R} TKB

<table>
<thead>
<tr>
<th></th>
<th>classical</th>
<th>AR</th>
<th>IAR</th>
<th>brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>atemporal</td>
<td>in P</td>
<td>coNP-c</td>
<td>in P</td>
<td>in P</td>
</tr>
<tr>
<td>no rigid predicate</td>
<td>in P</td>
<td>coNP-c</td>
<td>in P</td>
<td>in P</td>
</tr>
<tr>
<td>rigid concepts only</td>
<td>in P</td>
<td>coNP-c</td>
<td>in P</td>
<td>NP-c</td>
</tr>
<tr>
<td>rigid concepts and roles</td>
<td>in P</td>
<td>coNP-c</td>
<td>in P</td>
<td>NP-c</td>
</tr>
</tbody>
</table>

Data complexity

<table>
<thead>
<tr>
<th></th>
<th>classical</th>
<th>AR</th>
<th>IAR</th>
<th>brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>atemporal</td>
<td>NP-c</td>
<td>(\Pi^p_2)-c</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>no rigid predicate</td>
<td>NP-c</td>
<td>(\Pi^p_2)-c</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>rigid concepts only</td>
<td>NP-c</td>
<td>(\Pi^p_2)-c</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
<tr>
<td>rigid concepts and roles</td>
<td>NP-c</td>
<td>(\Pi^p_2)-c</td>
<td>NP-c</td>
<td>NP-c</td>
</tr>
</tbody>
</table>

Combined complexity
Conclusion and perspectives

Contributions

- Inconsistency-tolerant temporal query answering
 - AR, IAR, brave semantics extended to TCQ answering
 - practical algorithms for some cases (without rigid predicates)
 - IAR
 - AR for restricted queries
 - sound approximation of AR for general queries

- Complexity analysis
 - temporal dimension does not increase combined complexity
 - higher data complexity in only two cases out of nine

Future work

- Identify more cases where known algorithms can be used
- Practical algorithms for other cases
- Investigate \mathcal{EL}_\bot (\sim OWL 2 EL)

Thanks for your attention.

Questions?
Temporal query answering

- Temporal knowledge base (TKB) \(\langle \mathcal{T}, (A_i)_{0 \leq i \leq n} \rangle \)
 - global ontology: domain knowledge holds eternally
 - sequence of datasets: data at different time points

- **Rigid** predicates: interpretations are not allowed to change over time

- Temporal conjunctive query (TCQ): CQs + LTL operators
 - conjunctive queries are TCQs
 - if \(\phi_1, \phi_2 \) are TCQs, so are
 - \(\phi_1 \land \phi_2 \) (and) and \(\phi_1 \lor \phi_2 \) (or)
 - \(\bigcirc \phi_1 \) (next) and \(\bigcirc \neg \phi_1 \) (previous)
 - \(\bullet \phi_1 \) (weak next) and \(\bullet \neg \phi_1 \) (weak previous)
 - \(\Box \phi_1 \) (always) and \(\Box \neg \phi_1 \) (always in the past)
 - \(\Diamond \phi_1 \) (eventually) and \(\Diamond \neg \phi_1 \) (some time in the past)
 - \(\phi_1 U \phi_2 \) (until) and \(\phi_1 S \phi_2 \) (since)