DWRank: Learning concept ranking for ontology search

In Semantic Web Journal, vol. 7, no. 4, Pages 447-461, May 2016

Anila Sahar Butt, Armin Haller, and Lexing Xie
The Australian National University
CONCEPT SEARCH AND RANKING
Concept Search and Ranking

- Concept Search
 - Matching a search term with a more expressive class description

- Matching terms are defined with differing
 - Perspectives
 - Levels of detail
 - Reuse and Extensions

How to rank similar concepts with different levels of modelling details?
Relationship based Concept Retrieval Framework

- The framework retrieves and rank concepts for keyword query
 - DWRank Ranking Model
 - Top-k Filters
DWRank – Dual Walk Ranking Model

• Query independent scores for each concept of ontologies based on their importance
 – HubScore: Centrality of the concept
 – AuthScore: Authoritativeness of the Ontology

• Relevance score of a concept to a query:
 – DWRank Function: Linear model combines
 • Text relevancy of the concept label to a query
 • HubScore and AuthScore
HubScore – Centrality of a Concept

• **Connectivity:**
 – Relations starting from the concept

• **Neighbourhood:**
 – Relations starting from the concept to another central concept
AuthScore – Authoritativeness of an Ontology

- **Reuse**: Relations ending at the ontology
- **Neighbourhood**: Relations starting from another authoritative ontology to the ontology

PageRank

- :Location: 0.10
- :Restaurant: 0.145
- :People: 0.471
DWRank Function

- The ranking model is function of
 - Concept Relevancy: \(F_v(v, Q) = \sum_{q \in Q} f(q, \varphi(q)) \)
 - Hub Score: \(h(v, Q) \)
 - Auth Score: \(a(O) \)

- \(R(v, Q) = Fv(v, Q) \times [\alpha h(v, Q) + (1 - \alpha) a(O)] \)
 \[= 1 \times [0.5 \times 0.46 + 0.5 \times 0.471]\]
 \[= 0.466\]
DWRank vs. Linked-based Ranking Models

1. Direction of the walk varies based on the link type
 - Intra-ontology links: Reverse PageRank
 - Inter-ontology links: PageRank

2. Linked Analysis:
 - HubScore – Concept
 • Independently on each ontology
 - AuthScore – Ontology
 • Ontology Corpus
Top-K Filter

- **Intended Type Filter**
 - Intended Type vs. Context Resource
 - Name of the Person
 - Intended Type: Name
 - Context Resource: Person

- **Distinct Resource Filter**
 - Select Resources that are less overlapping
Evaluation

• Effectiveness of the approach
 – DWRank
 – DWRank + Filter

• CBRBench
 – Queries and Gold standard
 – Baseline Ranking models
DWRank and Filter Effectiveness

![Graph showing comparison between DWRank and MaxPerformance in AP@10 and NDCG@10 across different attributes: Person, Name, Event, Title, Location, Address, Music, Organization, Author, and Time.]

![Graph showing filter effectiveness across different attributes: Person, Name, Event, Title, Location, Address, Music, Organization, Author, and Time, comparing DWRank and DWRank + Filter.]
LEARNING CONCEPT RANKING
Need for LTR

• None of the commonly used evaluation algorithm performs adequately for all type of queries.

• So most of the proposed approaches used more than one ranking/evaluation metric to optimise the effectiveness of ranking models.
 – However for optimal performance of such algorithms the metrics’ weights need to be reset for each user query.
 • Manually setting metrics’ weights for each and every query is impractical
 • Solution: Learning to Rank
Learning Concept Ranking for DWRank

• Feature Set
 – HubScore, Max HubScore, Min HubScore, AuthScore, Text Relevancy
 – Target Feature: Relevance Score

• Training Data
 – CBRBench
 • <target> qid:<qid> <feature1>:<value> <feature2>:<value> ... <featuren>:<value> #<info>
 – Data Set
 • Training Set,
 • Validation Set,
 • Test Set
Learning Concept Ranking for DWRank (1/2)

• Metrics
 – P@10, AP@10, DCG@10, NDCG@10

• Learning to Rank Algorithm
 – LambdaMART
 • RankLib: http://sourceforge.net/p/lemur/wiki/RankLib/
 – Leave-one-out Cross Validation (LOOCV)
 – Optimised NDCG and Tested DCG, AP, P
Framework Overview

Index Construction and Learning Phase

- Ontology Collection
- CBRBench Gold standard
- Generate Training dataset
- Indexes
 - ConHub
 - OntAuth
- Ranking Model
- Learn Ranking Model
- Generate Training dataset

Query Processing Phase

- Top-K result
- HubScore, MaxHubScore, MinHubScore, AuthScore features value extraction for Candidate Resultset
- Candidate Resultset Selection
- Generate Ranking
- Text Relevancy

Candidate Resultset Selection

HubScore, MaxHubScore, MinHubScore, AuthScore features value extraction for Candidate Resultset

Generate Ranking

Top-K result

Generate Ranking

Text Relevancy

Candidate Resultset Selection

HubScore, MaxHubScore, MinHubScore, AuthScore features value extraction for Candidate Resultset
Learning to Rank Model Effectiveness

- P@10
- AP@10
- DCG@10
- NDCG@10

DWRank Fixed Weight Model
DWRank Learning to Rank Model