Intraspinal injection of human mesenchymal stromal cells in SOD1G93A ALS mice

Franziska Bursch
Hannover Medical School
Department of Neurology

Centre for Systems Neuroscience Hannover

Medizinische Hochschule Hannover
Cellular therapy

• Cellular therapy in ALS: neuroprotection by non-neuronal cells
• Non-neuronal cells are crucial for survival of motor neurons (Clement et al, 2003; Sun et al, 2013; Ferraiuolo et al, 2016;)
• Stem cell studies in human patients (Mazzini et al, 2015; Glass and Hertzberg et al, 2016; Chen et al, 2016)
• Mesenchymal stromal cells (MSCs)
 → Wide proliferation and differentiation potential
 → Good availability
 → Release of neuroprotective factors and cytokines

SMI 32 (red), DAPI (blue), CD44 (green)

Sun et al, 2013
Criteria of the International Society for Cellular Therapy to define MSCs

- Adherence to plastic
- Expression of CD105, CD90 and CD73
- No Expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA class II
- Differentiation into adipocytes, chondroblasts and osteoblasts

Dominici et al 2006
Isolation of human MSCs

- Goal: Good manufacturing practice (GMP) protocol
- Cooperation with GMP development unit (Prof. Köhl, MHH)
- hMSCs from bone marrow (healthy donors)
- Selection via plastic adherence
Quality control of MSCs

Chondrocytes

Differentiation medium
Negative control

Day 24

Alcian blue staining

Adipocytes

Differentiation medium
Negative control

Day 14

Oil Red O staining
Done by A. Sarikidi
Quality control of MSCs

Osteocytes

Differentiation medium

Negative control

Day 14

Alizarin Red S staining

Day 21

Done by A. Sarikidi
Quality control of MSCs

FACS analysis of MSCs

The isolated MSCs fulfill criteria of International Society for Cellular Therapy

→ The isolated MSCs fulfill criteria of International Society for Cellular Therapy

Done by A. Sarikidi
MSCs secrete growth factors and immune modulating factors (measured in conditioned medium using Bio-Plex® Multiplex Immunoassays).
In vivo studies of the MSCs
Aims of the *in vivo* studies

- Preclinical evaluation of administration of human MSCs
 - compare frequency of intraspinal injections (single vs. double)

- *In vivo* imaging of the MSCs by radioactive tracing
Transgenic ALS mouse model

- B6.SJL-\textit{Tg(SOD1*G93A)1Gur/J}
- Disease onset at around 90 days
- Death at the age of 130 ± 11 days
Intraspinal injection

• Surgery at the age of day 40 or at day 40 and day 90
• Injection at T13-L1 bilaterally into left and right ventral horn
• Injection of 100,000 cells/site in 1µl NaCl
• Control: injection of NaCl
Behavioural assessments

- Survival time
- General condition score
- Weight
- Rotarod test
- Steplength
- Runtime

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Healthy</td>
</tr>
<tr>
<td>4</td>
<td>First signs of paralysis and destabilized gait</td>
</tr>
<tr>
<td>3</td>
<td>Paralysis is obvious</td>
</tr>
<tr>
<td>2</td>
<td>Hind limbs are completely paralysed</td>
</tr>
<tr>
<td>1</td>
<td>Animals are not able to right themselves within 5 seconds or lost more than 20% of original weight (week 10)</td>
</tr>
</tbody>
</table>

Knippenberg et al, 2010
Intraspinal injection at day 40
Intraspinal injection at day 40

Statistical analysis: Survival: Kaplan-Meyer-Curve, followed by Gehan-Breslow-Wilcoxon test; General Condition: 2 way Anova followed by Bonferroni post-test ★p≤0.05, ★★p≤0.01

Done together with K.J. Rath
Intraspinal injection at day 40

Weight

Rotarod

NaCl n=22
MSC n=22

Statistical analysis: 2 way Anova followed by Bonferroni post-test ★ p≤0.05, ★★ p≤0.01

Done together with K.J. Rath
Intraspinal injection at day 40

Runtime

NaCl n=20
MSC n=14

Statistical analysis: 2 way Anova followed by Bonferroni post-test ★ p≤0.05, ★★ p≤0.01

Done together with K.J. Rath
Intraspinal injection at day 40 and at day 90
Intraspinal injection at day 40 and at day 90

Survival

- NaCl/NaCl n=20
- MSC/NaCl n=18
- MSC/MSC n=19

General Condition

- NaCl/NaCl
- MSC/NaCl
- MSC/MSC

Statistical analysis: Survival: Kaplan-Meyer-Curve, followed by Gehan-Breslow-Wilcoxon test; General Condition: 2 way Anova followed by Bonferroni post-test ★p≤0.05, ★★p≤0.01
Intraspinal injection at day 40 and at day 90

Weight

![Weight Graph](image)

- NaCl/NaCl n=20
- MSC/NaCl n=18
- MSC/MSC n=19

Rotarod

![Rotarod Graph](image)

Statistical analysis: 2 way Anova followed by Bonferroni post-test ★ p≤0.05, ★★ p≤0.01
Intraspinal injection at day 40 and at day 90

Runtime

- NaCl/NaCl
- MSC/NaCl
- MSC/MSC

Statistical analysis: 2 way Anova followed by Bonferroni post-test ★★ p≤0.01, ★ p≤0.05

Steplength

- NaCl/NaCl
- MSC/NaCl
- MSC/MSC

NaCl/NaCl n=20
MSC/NaCl n=18
MSC/MSC n=19
Radioactive tracing of MSCs

- Cells incubated with 400 MBq of fluorodesoxyglucose (FDG) for 60 minutes
- Injection of 2x100,000 MSCs in the spinal cord
- Scans after surgery and 1, 2 and 4 h after injection (20 min static scans)

Cooperation with Department of Nuclear Medicine, MHH
Scans and analysis done by Dr. Bascunana Almarcha, Department of Nuclear Medicine, MHH
Summary

Single MSCs injection (day 40)
 • significant effect in weight loss

Repeated MSCs injection (day 40 and day 90)
 • significant difference in weight loss and runtime
 • trend towards prolonged survival

In vivo imaging with radioactive tracer
 • MSCs can be detected in the spinal cord
Outlook

• Compare intraspinal injection with intrathecal injection
• Immunohistochemical analysis of motorneuron loss and glial activation
• Analysis of survival of MSCs after injection over time
 → use of more stable radioactive markers
Supervisor group
Prof. Dr. Susanne Petri
Prof. Dr. Peter Claus
Prof. Dr. Kerstin Schwabe

Department of Neurology
Dr. Sebastian Böselt
Dr. Karl-Jan Rath
Anastasia Sarikidi
Ekaterini Kefalakes
Dr. Nadine Thau-Habermann
Dr. Norman Kalmbach
Sarah Pederson
Inken Lange
Christine Hotoppe-Hergesell
Carola Kassebaum
Dr. Theresa Hartung

Institute of Cellular Therapeutics
Prof. Dr. Ulrike Köhl

Institute of Transplant Immunology
Prof. Dr. Christine Falk

ZSN
Prof. Dr. Beatrice Grummer
Dr. Tina Selle
Sabine Remmers

Department of Nuclear Medicine
Prof. Dr. Jens Bankstahl
Dr. Pablo Bascunana Almarcha
Silvia Eilert
Petra Felsch
Alexander Kanwisch
Thank you for your attention!