WOMBAT – A Generalization Approach for Automatic Link Discovery

Mohamed Ahmed Sherif1, Axel-Cyrille Ngonga Ngomo1,2, and Jens Lehmann3,4

1 R&D Department II, Computing Center, University of Leipzig, 04109 Leipzig, Germany
2 Data Science Group, University of Paderborn, Pohlweg 51 33098 Paderborn, Germany
3 Computer Science Institute, University of Bonn, Römerstr. 164, 53117 Bonn, Germany
4 Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

May 30, 2017
Overview

1 Motivation

2 WOMBAT Algorithm

3 Evaluation

4 Conclusion & Future Work
Growing Linked Open Data Cloud
- 12 datasets \Rightarrow 9000+ datasets
- http://stats.lod2.eu

Growing size of single knowledge bases
- **DBpedia 2.0** (1997)
 - 103 M triples
 - 1.95 M things
- **DBpedia 2016-04**
 - 9.5 B triples
 - 5.2 M things
Motivation
Why we need link discovery?

1. Complex information needs
 ⇒ Need to consume data across KBs

2. Fourth Linked Data principle

3. Real-time application
 - Structured machine learning
 - Data integration
 - Data enrichment
 - Cross-ontology QA
 - Reasoning
 - Federated queries
 - ...

Sherif et al.
WOMBAT – A Generalization Approach for Automatic Link Discovery
May 30, 2017
4 / 19
Motivation

Why is it difficult?

- Need for automatic LD for evolving datasets
- Mostly positive examples on the Web of Data
- Negative examples rarely to be found
- Missing links cannot be regarded as negative examples (Open World Assumption)
Motivation
Link Discovery (LD)

Given two knowledge bases S and T, find links of type \mathcal{R} between S and T

Formally
- Find $M = \{(s, t) \in S \times T : \mathcal{R}(s, t)\}$
- Similarity approach: Find $M' = \{(s, t) \in S \times T : \sigma(s, t) \geq \theta\}$
- Distance approach: Find $M' = \{(s, t) \in S \times T : \delta(s, t) \leq \tau\}$

Goal: Find link specification (LS)

- $(\text{euclidean}(x.\text{price}, y.\text{price}), 0.90)$
- $(\text{levenshtein}(x.\text{desc}, y.\text{desc}), 0.50)$
- $(\text{trigrams}(x.\text{name}, y.\text{name}), 0.50)$
- $(\text{cosine}(x.\text{name}, y.\text{name}), 0.52)$
I. Learn atomic LS

II. Combine atomic LS
WOMBAT Algorithm

Algorithm: I. Learning Atomic Link Specifications (LS)

Goal: Derive a set of initial atomic LS

1. Compute the subset of properties with sufficient coverage
2. Return as many mappings as property pairs with highest possible F-measure

- \((\text{euclidean}(x.\text{price}, y.\text{price}), 0.90)\)
- \((\text{levenshtein}(x.\text{desc}, y.\text{desc}), 0.50)\)
- \((\text{trigrams}(x.\text{name}, y.\text{name}), 0.50)\)
- \((\text{cosine}(x.\text{name}, y.\text{name}), 0.52)\)
Goal: Derive a set of complex LS

1. **Input:** set of atomic LSs
2. Use \cap, \sqcup, \setminus to append further atomic LS
3. Compute complex LS by using an approach based on generalisation operators
4. Perform an iterative search through a solution space based on a score function
5. **WOMBAT** uses F-measure as the score function

Operators:
- \cap: Intersection
- \sqcup: Union
- \setminus: Set difference

Score Functions:
- $(\text{euclidean}(x.\text{price}, y.\text{price}), 0.90)$
- $(\text{levenshtein}(x.\text{desc}, y.\text{desc}), 0.50)$
- $(\text{trigrams}(x.\text{name}, y.\text{name}), 0.50)$
- $(\text{cosine}(x.\text{name}, y.\text{name}), 0.52)$
Wombat Algorithm
Simple Operator (ϕ)

- Is not a refinement operator
- Allows efficient implementation
- Can not reach all specifications
 e.g., \((A_1 \sqcup A_2) \cap (A_3 \sqcup A_4)\)

\[
\varphi(L) = \begin{cases}
\bigcup_{i=1}^{n} A_i = A^* & \text{if } L = \bot \\
\left(\bigcup_{i=1}^{n} L \sqcup A_i \right) \cup \left(\bigcup_{i=1}^{n} L \cap A_i \right) \cup \left(\bigcup_{i=1}^{n} L \setminus A_i \right) & \text{otherwise}
\end{cases}
\]

Example: Assume we have only 2 atomic LS \((A_1 \text{ and } A_2)\)

\[
\begin{align*}
A^* \cap A_1, F &= 0.2 \\
A^* \cap A_2, F &= 0.6 \\
A^* \sqcup A_2, F &= 0.4 \\
A^* \sqcup A_1, F &= 0.4 \\
A^* \setminus A_1, F &= 0.8 \\
A^* \setminus A_2, F &= 0.5 \\
\end{align*}
\]
Wombat Algorithm
Complete Operator (ψ)

- Uses a more sophisticated expansion strategy
- Allows learning nested LS
- Is an upward complete refinement operator
- Is improved using pruning

$$\psi(L) = \begin{cases} \{A_i \setminus A_j | A_i, A_j \in A \text{ for all } 1 \leq k \leq m\} & \text{if } L = \bot \\ \{L \cup A_i | A_i \in A, A_j \in A\} & \text{if } L \in A \\ \{L_1\} \cup \{L \cup A_i | A_i \in A, A_j \in A\} & \text{if } L = L_1 \setminus L_2 \\ \{L_1 \cap \cdots \cap L_{i-1} \cap L' \cap L_{i+1} \cap \cdots \cap L_n | L' \in \psi(L_i)\} \cup \{L \cup A_i | A_i \in A, A_j \in A\} & \text{if } L = L_1 \cap \cdots \cap L_n (n \geq 2) \\ \{L_1 \cup \cdots \cup L_{i-1} \cup L' \cup L_{i+1} \cup \cdots \cup L_n | L' \in \psi(L_i)\} \cup \{L \cup A_i | A_i \in A, A_j \in A\} & \text{if } L = L_1 \cup \cdots \cup L_n (n \geq 2) \end{cases}$$

Example: Assume we have only 2 atomic LS (A₁ and A₂)

1. A₁ \ (A₂ \ A₁), F = 0.7
2. A₁ \ (A₁ \ A₂), F = 0.6
3. A₁ \ A₂, F = 0.4
4. A₂ \ A₁, F = 0.3
5. (A₁ \ A₂) \ (A₂ \ A₁), F = 0.5
6. A₁ \ (A₁ \ A₂), F = 0.6
7. A₁ \ (A₂ \ A₁), F = 0.5
8. A₂ \ A₁, F = 0.3
9. ⊥
\[\psi \text{ is an upward refinement operator} \]

The set of links generated by a child node is a superset of or equal to the set of links generated by its parent.

- \(r_{\text{max}} \) is bounded by the most general constructable LS
- \(p_{\text{max}} \) is bounded as false positives cannot disappear during generalisation
- \(F_{\text{max}} = \frac{2p_{\text{max}}r_{\text{max}}}{p_{\text{max}}+r_{\text{max}}} \)
- Prune all nodes in the search tree with \(F_{\text{max}} < F_{\text{best}} \)

Example: Assume \(F_{\text{best}} = 0.8 \)

\[
\begin{align*}
F_{\text{max}} &= 0.2 & F_{\text{max}} &= 0.8 & F_{\text{max}} &= 0.5 & F_{\text{max}} &= 0.4 & F_{\text{max}} &= 0.8 \\
\end{align*}
\]
ψ is an upward refinement operator

The set of links generated by a child node is a superset of or equal to the set of links generated by its parent

- r_{max} is bounded by the most general constructable LS
- p_{max} is bounded as false positives cannot disappear during generalisation
- $F_{max} = \frac{2p_{max}r_{max}}{p_{max} + r_{max}}$
- Prune all nodes in the search tree with $F_{max} < F_{best}$

Example: Assume $F_{best} = 0.8$

- $F_{max} = 0.2$
- $F_{max} = 0.8$
- $F_{max} = 0.5$
- $F_{max} = 0.4$
- $F_{max} = 0.8$
8 benchmark datasets (5 real-world, 3 synthetic)

2.80 GHz PC running OpenJDK 64-Bit Server 1.7.0_75 on Ubuntu 14.04.2 LTS

7 GB RAM

WOMBAT

- Similarity measures: jaccard, trigrams, cosine and qgrams
- Termination: $F = 1$ or max number of refinement tree depth of 10
- Properties coverage threshold = 0.6
Evaluation

10-Fold Cross Validation F-Measure

<table>
<thead>
<tr>
<th>Dataset</th>
<th>WOMBAT</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>EAGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simple</td>
<td>Complete</td>
<td>Linear</td>
<td>Conjunction</td>
<td>Disjunction</td>
<td></td>
</tr>
<tr>
<td>Person 1</td>
<td>1.00</td>
<td>1.00</td>
<td>0.64</td>
<td>0.97</td>
<td>1.00</td>
<td>0.99 ± 0.004</td>
</tr>
<tr>
<td>Person 2</td>
<td>1.00</td>
<td>0.99</td>
<td>0.22</td>
<td>0.78</td>
<td>0.96</td>
<td>0.94 ± 0.032</td>
</tr>
<tr>
<td>Restaurants</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97 ± 0.024</td>
</tr>
<tr>
<td>DBLP-ACM</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98 ± 0.007</td>
</tr>
<tr>
<td>Abt-Buy</td>
<td>0.60</td>
<td>0.61</td>
<td>0.06</td>
<td>0.06</td>
<td>0.52</td>
<td>0.65 ± 0.025</td>
</tr>
<tr>
<td>Amazon-GP</td>
<td>0.70</td>
<td>0.67</td>
<td>0.59</td>
<td>0.71</td>
<td>0.73</td>
<td>0.71 ± 0.033</td>
</tr>
<tr>
<td>DBP-LMDB</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99 ± 0.004</td>
</tr>
<tr>
<td>DBLP-GS</td>
<td>0.94</td>
<td>0.94</td>
<td>0.90</td>
<td>0.91</td>
<td>0.91</td>
<td>0.93 ± 0.006</td>
</tr>
<tr>
<td>Average</td>
<td>0.90</td>
<td>0.90</td>
<td>0.67</td>
<td>0.80</td>
<td>0.88</td>
<td>0.90 ± 0.017</td>
</tr>
</tbody>
</table>
Evaluation

Pruning Procedure

<table>
<thead>
<tr>
<th>Dataset</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>1.57</td>
<td>2.13</td>
<td>1.85</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
</tr>
<tr>
<td>Person 2</td>
<td>1.29</td>
<td>1.29</td>
<td>1.57</td>
<td>1.57</td>
<td>1.57</td>
<td>1.57</td>
<td>1.57</td>
<td>1.57</td>
</tr>
<tr>
<td>Restaurant</td>
<td>1.17</td>
<td>1.45</td>
<td>1.17</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td>Abt-Buy</td>
<td>3.38</td>
<td>3.00</td>
<td>3.00</td>
<td>3.39</td>
<td>3.39</td>
<td>3.39</td>
<td>3.39</td>
<td>3.39</td>
</tr>
<tr>
<td>Amazon-GP</td>
<td>1.14</td>
<td>1.38</td>
<td>1.33</td>
<td>1.37</td>
<td>1.38</td>
<td>1.45</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>DBP-LMDB</td>
<td>1.00</td>
<td>1.86</td>
<td>2.86</td>
<td>1.86</td>
<td>1.86</td>
<td>2.33</td>
<td>2.36</td>
<td>2.36</td>
</tr>
<tr>
<td>DBLP-GS</td>
<td>1.79</td>
<td>1.93</td>
<td>2.01</td>
<td>2.36</td>
<td>2.45</td>
<td>1.66</td>
<td>2.44</td>
<td>2.26</td>
</tr>
</tbody>
</table>

Pruning factor: \[
\frac{\text{number of searched nodes (search tree size + pruned nodes)}}{\text{Max. size of the search tree (2000 nodes in this set of experiments)}}
\]
Evaluation

Training with only 2%

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Pessimistic</th>
<th>Re-weighted</th>
<th>Simple</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons 1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Persons 2</td>
<td>0.97</td>
<td>1.00</td>
<td>0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>Restaurants</td>
<td>0.95</td>
<td>0.94</td>
<td>0.98</td>
<td>0.88</td>
</tr>
<tr>
<td>DBLP-ACM</td>
<td>0.93</td>
<td>0.95</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Amazon-GP</td>
<td>0.39</td>
<td>0.43</td>
<td>0.53</td>
<td>0.45</td>
</tr>
<tr>
<td>Abt-Buy</td>
<td>0.36</td>
<td>0.37</td>
<td>0.37</td>
<td>0.36</td>
</tr>
<tr>
<td>Average</td>
<td>0.77</td>
<td>0.78</td>
<td>0.77</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Conclusion & Future Work

Conclusion

- Presented **WOMBAT**, the first approach to learn LS from positive examples
- **WOMBAT** is based on generalisation over the space of LS
- Presented 2 operators to achieve this goal
- Evaluated **WOMBAT** against SOTA
- **WOMBAT** outperforms SOTA by 11% on average

Future work

- Parallelize **WOMBAT**
- Try more aggressive pruning techniques for better scalability
- Apply active learning strategies
- Unsupervised **WOMBAT**
Thank you for your Attention!

Mohamed Ahmed Sherif
Sherif@informatik.uni-leipzig.de
http://aksw.org/MohamedSherif
http://aksw.org/Projects/LIMES

This work has been supported by H2020 projects SLIPO (GA no. 731581) and HOBBIT (GA no. 688227) as well as the DFG project LinkingLOD (project no. NG 105/3-2) and the BMWI Project GEISER (project no. 01MD16014).