MOCHA 2017
Mighty Storage Challenge

Presenter: Michael Röder

MOCHA @ ESWC 2017
Portoroz, Slovenia

HOBBIT
Holistic Benchmarking of Big Linked Data

Horizon 2020, GA No 688227

May 30th, 2017
Axel-Cyrille Ngonga Ngomo, Institute for Applied Informatics, Germany
Irini Fundulaki, Foundation for Research and Technology – Hellas (FORTH), Greece
Mirko Spasic, OpenLink, UK
Henning Petzkam, Fraunhofer IAIS, Germany
Vassiliki Rentoumi, National Center for Scientific Research/Demokritos

https://project-hobbit.eu/challenges/mighty-storage-challenge/

- 100 Euro for winners of tasks (have to beat the baseline)
- 100 Euro for the winner of most tasks
Overview

- Challenge for triple stores
- 4 Tasks
- 1st iteration
- Carried out using HOBBIT benchmarking platform
Goal of Task 1: Storage and Retrieval of Streamed Data from triple stores

Choke points:
- Scalability (Data volume)
- Time complexity (Data velocity)

Input: RDF triples describing events in a production system
Task 1 - Components and KPIs

- Create reference set for each SELECT query (Jena TDB)
- Perform INSERT queries against triple store
- Perform SELECT queries against triple store

KPIs:

1. Maximum Triples Per Second (TPS)
2. Recall, Precision and F-measure of each task and overall benchmark
3. Delay between sending task and retrieving results
Goal of Task 2: To measure how data stores perform with different types of queries.

Starting point of DSB: Social Network Benchmark (SNB) from LDBC

Synthetic Dataset for bulk-loading
- RDF-ized and modified LDBC dataset
- With lower structuredness corresponding to real-world datasets
- 50M of triples

Query selection performed based on the choke-points relevant for query executions (subquery unnesting, complex aggregate performance, detecting dependent group-by keys, etc)
- Complex SPARQL SELECT queries (14 different types)
- Simple SPARQL SELECT queries - lookups (7 different types)
- SPARQL INSERT queries (8 different types)
Task 2 - Data Storage Benchmark (DSB)

- Workload consists of:
 - Bulk loading of the dataset
 - 1500 of operations (SELECT and INSERT) queries, executed sequentially
- Examination of the best performance of the tested system for a given query, by allowing the system to have all resources available
- The results of such benchmark should navigate the further optimizations of the system
- KPIs:
 - Loading time
 - Throughput (the number of queries per second)
 - Number of wrong query answers
 - Average query execution time per query type
Task 3 is using the Versioning Benchmark, SPBv in order to test the ability of versioning systems:
- to efficiently manage evolving datasets
- to efficiently manage queries evaluated across the multiple versions of said datasets.

Dataset produced by the SPBv Data Generator:
- metadata represented in RDF about real world events (e.g., sport events, elections) produced.
- data stored to different versions according to their creation date.
- configurable in terms of dataset size, numbers of versions, generation period, data format etc.

Eight different query types are supported
- E.g. queries on single versions, multiple versions, deltas (difference of two versions), materialization queries on versions/deltas etc.
Task 4 checks software for its capability of enabling Faceted Browsing through structured datasets.

Faceted Browsing stands for a session-based and state-dependent, interactive method for query formulation, which provides a user with an effective way for exploration of a search space.

Dataset produced by HOBBITs generator PoDiGG for realistic public transport dataset, simulating

- train connections between stations on an artificially created map
- including delay values and delay reasons.
Task 4 - Faceted Browsing

- Workload consists of **11 browsing scenarios comprising 173 SPARQL queries**
 - **Instance retrievals** - returns instances of state within browsing scenario
 - **Facet counts** - returns count for suggested facet for transition in browsing scenario

- **Choke points** consist of types of transitions from one state to the other
 - Ideally, a system **uses the information of the state of the browsing scenario to return its answer to the SPARQL query that makes up the desired transition, instead of answering the query on basis of the entire dataset in its original form.**

- **KPIs** are **time and correctness**

 Instance Retrieval
 - Query-per-second score
 - Precision
 - Recall
 - F1-score
 - for each choke point/type of transition individually computed

 Facet Counts
 - Query-per-second score
 - Error (Absolute distance to gold standard)
 - Error ratio (Absolute distance to gold standard divided by gold standard)
Participants

- QUAD (Potocki et al.)
 Tasks 1, 2 and 4

- Virtuoso (Spasić et al.)
 Task 1, 2 and 4

- Baseline Virtuoso Open Source
Future

- Second half of 2017: **Open** challenge
 - Easier participation
 - Online leader board
 - (Planned) winner announcement in February 2018

- Nearer future: **Results at the closing session**

- Now
 - Quad participant presentation
 - Virtuoso participant presentation
Thank You! Questions?