Self-Organized Criticality

By

Chew Lock Yue, PhD

Division of Physics and Applied Physics
School of Physical and Mathematical Sciences
Nanyang Technological University
Who could ever calculate the path of a molecule? How do we know that the creation of worlds are not determined by falling grains of sand?

- Victor Hugo, *Les Misérables*
Self-Similarity

Road Network
Leaf Vascular Network
River Network

Lung Tubular Network
Blood Vessel Network
Neural Network
Fractals

$m = r^D$

$D = \frac{\ln m}{\ln r}$

$m \sim \text{Number of Copies}$

$r \sim \text{Scale Factor}$

$D \sim \text{Fractal Dimension}$

$m = 1$

$r = 1$

$m = 2$

$r = 2$

$m = 3$

$r = 3$

Koch Snowflake
Power Laws

\[P(s) = s^{-\tau} \]

- Earthquake Magnitude
- Cotton Price
- Biological Extinction
- Ranking of Cities
- Ranking of Words
- X-Ray Intensities from Solar Flares
- Pulsar Glitches
- Earthquake Magnitude
1/f Noise

Intensity of Light from Quasar

Global Temperature
Criticality

Pressure

Liquid-gas critical point

\[\epsilon = \frac{(T - T_C)}{T_C} \]

Density - \(\rho \)

Data for \(\text{CO}_2 \) and Xe. Critical index \(\beta \approx 0.34 \)

Ferromagnetism critical point

Specific Heat of MnF\(_2\). The power law \(C \sim \epsilon^{-0.16} \)

Universality

Ising Model

A model for ferromagnetic phase transition

\[H = -J \sum_{i,j} \sigma_i \sigma_j - h \sum_i \sigma_i \]

Ising Model Simulation
\((h = 0) \)

\[T \to 0 \]

\[T \to T_c \]

\[T \to \infty \]
Experimental Comparison

| Material | Experimenters | Ref. | T_e (°K) | $\epsilon = |\Delta T| / T_e$ Range for fit | α |
|------------------------|---------------|------|------------------|-------------------------------|---------|
| **Antiferromagnets** | | | | | |
| MnF$_2$ | Teaney | 86 | 67.33±0.01 | 2×10$^{-4}$–5×10$^{-2}$ | ≤0.16 |
| CoCl$_2$·6H$_2$O | Skalyo, Friedberg | 84 | 2.289±0.002 | 10$^{-3}$–3×10$^{-2}$ | ≤0.11 |
| MnCl$_2$·4H$_2$O | Friedberg, Wasscher | 89 | 1.622±0.005 | 10$^{-3}$–10$^{-1}$ | |
| CuK$_2$(SO$_4$)$_2$·6H$_2$O | Miedema, Wielinga, Huiskamp | 85 | 0.193±0.001 | 10$^{-3}$–2×10$^{-2}$ | ≤0.6 |
| CoCs$_2$Cl$_6$ | Miedema, Wielinga, Huiskamp | 85 | 0.52±0.01 | 4×10$^{-1}$–2×10$^{-2}$ | ≤0.7 |
| RbMnF$_3$ | Teaney, Moruzzi, Argyle | 90 | 0.83±0.01 | 2×10$^{-1}$–5×10$^{-2}$ | ≤0.15 |
| **Ferromagnets** | | | | | |
| Iron | Kraftmakhér, Romashina | 91 | 1043.0±1.0 | 2×10$^{-3}$–10$^{-1}$ | ≤0.17 |
| CuK$_2$Cl$_4$·2H$_2$O | Miedema, Wielinga, Huiskamp | 92 | 0.88±0.01 | 10$^{-3}$–10$^{-1}$ | ≤0.10 |
| Nickel | Kraftmakhér | 93 | 627.0 | 5×10$^{-3}$–8×10$^{-2}$ | |

Value used for scaling law analysis
Molecular field theory
3-dimensional Ising model

Specific Heat
Experimental Comparison

| Material | Experimenters | Ref. | Method | T_c (°K) | $\epsilon = | \Delta T |/T_c$ Range for fit | β |
|-------------------|----------------------|------|-------------------------------|---------------|----------------------|-------------|
| **Antiferromagnets** | | | | | | |
| MnF$_2$ | Heller, Benedek | 51 | NMR on F19 | 67.336±0.003 | 8×10$^{-6}$–2×10$^{-2}$ | 0.335±0.01 |
| CuCl$_2$·2 H$_2$O | Poulis, Hardyman | 76 | NMR, Protons | 4.337±0.003 | 5×10$^{-1}$–10$^{-2}$ | 0.18±0.07 |
| CoCl$_2$·6 H$_2$O | Sawatzky, Bloom | 52 | NMR, Protons | 2.275 | 10$^{-4}$–10$^{-1}$ | 0.29±0.03 |
| | Van der Lugt, Poulis | 77 | NMR, Protons | 2.275 | 5×10$^{-1}$–2×10$^{-1}$ | 0.15±0.05 |
| KMnF$_3$ | Cooper, Nathans | 69 | Neutron scattering | 88.06±0.02 | 10$^{-2}$–10$^{-1}$ | 0.23±0.02 |
| **Ferromagnets** | | | | | | |
| Iron | Preston, Hanna, Heberle | 71 | Mössbauer Fe57 | 1042.0±0.3 | 2×10$^{-1}$–10$^{-1}$ | 0.34±0.02 |
| | Potter | 78 | Magnetocaloric effect | 1035.0±2.0 | 4×10$^{-1}$–2×10$^{-1}$ | 0.36±0.08 |
| Nickel | Howard, Dunlap, Dash | 79 | Mössbauer Fe57 | 629.4 | 10$^{-1}$–1.6×10$^{-1}$ | 0.51±0.04 |
| | | | NMR, Eu153 | 16.50±0.03 | 10$^{-2}$–10$^{-1}$ | 0.33±0.03 |
| EuS | Heller, Benedek | 79 | NMR, Eu153 | 16.50±0.03 | 10$^{-2}$–10$^{-1}$ | 0.33±0.015 |
| YFeO$_2$ | Gorodetsky, Shtrikman, Treves | 30 | Vibrating sample magnetometer | 643 | 2×10$^{-3}$–3×10$^{-3}$ | 0.55±0.04 |
| | Ehrenfeucht, Shtrikman, Treves | 80 | Mössbauer Fe57 | 640 | 10$^{-3}$–3×10$^{-3}$ | 0.354±0.005 |
| CrBr$_3$ | Senturia, Benedek | 81 | NMR, Br79, Br81 | 32.56±0.015 | 7×10$^{-1}$–5×10$^{-2}$ | 0.365±0.015 |

Value used for scaling law analysis
Molecular field theory
3-dimensional Ising model
Complexity

- Higher Level Structures
- Lower Level Structures

Complexity

- Edge of Chaos
- Critical Point
 - Phase Transition
 - Order Parameter

- Regular
- Chaos

- Macroscopic Level
- Metastable, Complex Structures
- Microscopic Level
Coupled Pendulums

Per Bak
Pioneer in the physics of complex systems
Sandpiles

Discoverers of Self-Organized Criticality

Per Bak

Chao Tang

Kurt Wiesenfeld
Example of SOC: sandpile model on 2D square lattice (active) $z(x,y) → z(x,y) - 4$ (topple) $z(x \pm 1,y) → z(x\pm,y) + 1$ $z(x,y \pm 1) → z(x,y \pm 1) + 1$
Sandpile Dynamics

... sandpile model on 2D square lattice

1	1	0	2	3	0
0	3	2	2	2	3
2	2	2	1	0	2
2	0	0	3	1	1
1	1	3	4	2	1
3	2	1	1	0	2

1	1	0	2	3	0
0	3	2	2	2	3
2	2	2	1	0	2
2	0	1	4	1	1
1	2	0	1	3	1
3	2	2	2	0	2

1	1	0	2	3	0
0	3	2	2	2	3
2	2	2	1	0	2
2	0	1	0	2	1
1	1	4	1	3	1
3	2	1	2	0	2

1	1	0	2	3	0
0	3	2	2	2	3
2	2	2	1	0	2
2	0	2	0	2	1
1	2	0	2	3	1
3	2	2	2	0	2
Power Law Distributions

Distribution of Cluster Size

2-Dimensional

Distribution of Lifetime

3-Dimensional

Cluster Size

Lifetime
Self-Organized Criticality

Source: Netherlands Organization for Scientific Research

Fractals

Attractor for Metastable Configurations

1/f behavior
Self-Organized Criticality

Finite Size Scaling

\[P(s) = \alpha_s s^{-\tau} G_s \left(\frac{s}{b_s L^D} \right) \]
SOC Features

- Slow Drive/Fast Relaxation
- Open/Dissipative
- Threshold/Instability
- Contingent/History
- Avalanche/Fluctuations
Experimental Verifications

Rotating Drum Experiment

IBM Experiment

Norwegian Rice Pile

University of Michigan Experiment
Earthquakes

OFC Model
Non-conservative SOC Model

\[E_i \rightarrow E_i + \varepsilon \]

Homogeneous driving

\[E_i \geq E_c \Rightarrow \begin{cases} E_i \rightarrow 0, \\ E_{nn} \rightarrow E_{nn} + \alpha E_i \end{cases} \]

Burridge-Knopoff Block-Spring Model

Gutenberg-Richter Law

The Earth Crust has self-organized to a critical state.
Bak-Sneppen Model: Random numbers between 0 and 1 are arranged in a circle. At each time step, the lowest number, and the number at its two neighbors, are each replaced by new random numbers.

\[f(t) = f_c - A \left(\frac{t}{N} \right)^{-1/(\gamma-1)} \]

Self-Organization
Punctuated Equilibrium

- Cambrian Explosion
- Dinosaur Extinction

![Graphs and Diagrams]

- Phanerzoic Genera
- Power Law Behavior
- Devil's Staircase
- Thoracic Width

![Graphs and Diagrams]

- Accumulated Activity over time
- Mutation Activity
- Mean Thoracic Width with time markers

![Graphs and Diagrams]

- Extinction Percentages
- Geological Eras: Devonian, K-T and Triassic, Ordovician, Permian
Forest Fire Model

- A cell with burning tree turns into an empty cell
- A tree will burn if at least one neighbor is burning
- A tree ignites with probability f even if no neighbor is burning
- A tree appears in an empty cell with probability p
Stock Market Crashes

- Imitation
- Herding
- Cooperativity
- Feedbacks

Instabilities

Self-Organizes to Criticality

Speculative Bubbles

Crashes

Graph showing a power law distribution with an exponent of -3, indicating

DJIA on Black Monday, 1987

Graph shows a spike in DJIA values during the month of October.
The Brain

Observation
Other thoughts

\{ \text{THOUGHTS} \} \sim \text{small or large avalanche}

Brain Self Organizes into a Critical State
- Subcritical \sim \text{access limited information}
- Supercritical \sim \text{too noisy}

\begin{align*}
\text{Signal} \\
(\text{Red or Green}) \\
\text{World}
\end{align*}
The critical state, with jams of all sizes, is the most efficient state, that can be reached dynamically.

Subcritical ~ free flow (under-utilization)

Supercritical ~ jammed (over-utilization)

From time series of number of vehicles at fixed location

Lifetime distribution from emergent jam

1/f noise

Power Spectral

Power Law
A Relook at SOC

- What is distinct about SOC?
 - Slowly driven, interaction dominated threshold system.
 - Self-organization versus tuning of parameters
 - Robustness of critical behavior

- Is there a theory of SOC systems?
 - Mean field theory
 - Exact solution in terms of operators for Abelian sandpile
 - Langevin equations
 - Dynamically driven renormalization group

- Has SOC taught us anything new about the world?
 - The importance of fluctuations

- Is there anyway predictive power in SOC?
 - Fluctuations have prevented us from predicting SOC systems in detail.
 - Understanding of mechanisms can provide insights into possible measures
 1. Having small or medium size fire/ Releasing social tensions in small or medium groups
 2. Create friction in the system ~ Cooling measures, e.g. Stock market, Property market.
Inconclusive experimental evidence on the possible causal relationship between the emergent power laws and the underlying self-organized critical state

- Variable selection
- Gibrat’s law – growth process by importance measure
- Coherent noise model (non-critical steady state)
- Highly optimized tolerance (non-critical self-organizing state)

Are the empirical distributions of complex systems exactly power law?

- Pareto, log-normal, log-Cauchy distributions look similar in log-log plot
- Heavy tailed distributions

Dragon Kings
References

References