Lesson No. 3: Graphs continued

1. Graph colorings
 - Vertex-colorings (Brook’s theorem, Mycielski’s construction)
 - Edge-colorings (Vizing’s theorem, König’s theorem, snarks)

2. Matchings (Hall’s theorem)
Let $G = (V, E)$ be a graph and C a set of “colors”.

Definition

A **vertex-coloring** (barvanje točk) of G is a function $c : V \rightarrow C$. The coloring is **proper** (pravilno) if $u \sim v \Rightarrow (v) \neq c(u)$. G is k-vertex-colorable (točkovno k-obarvljiv) if there exists a proper vertex-coloring with $|C| = k$.

- G is k-colorable \Rightarrow G is ℓ-colorable for any $\ell \geq k$.
- **Chromatic number** (kormatično število) of G:

$$\chi(G) = \min\{k : G \text{ is } k\text{-vertex-colorable}\}$$
Vertex-colorings – examples

2-coloring of the cube.

3-coloring of the Petersen.
... more examples

- $\chi(K_n) = n$.
- $\chi(C_{2n}) = 2$.
- $\chi(C_{2n+1}) = 3$.
- If $H \leq G$, then $\chi(H) \leq \chi(G)$.

Corollary

*If G contains a cycle of odd length, then $\chi(G) \geq 3$.***
Clearly, $\chi(G) = 1$ if and only if $G \cong K_n^C$.

Lemma

$\chi(G) \leq 2$ if and only if G is bipartite.

Proof: ... think of color classes as bipartition sets ...

We know that graphs with $\chi \leq 2$ cannot have cycles of odd length. We will now show that the converse holds as well:

Lemma

*If G contains no cycles of odd length, then $\chi(G) \leq 2$.***
Proof. WLOG: G is connected. Choose $v \in V(G)$. For $u \in V(G)$ let:

- $c(u) = \text{“blue”}$ if $d(v, u)$ is even;
- $c(u) = \text{“red”}$ if $d(v, u)$ is odd.

If this is not a proper coloring, then there are two adjacent vertices x, y that are both at even or both at odd distance from v.

Find shortest paths P_x, P_y from v to x and to y. Then $P_x(xy)P_y^{-1}$ is a closed walk of odd length.

To complete the proof, we need to show the following:

Exercise. If a graph contains a closed walk of odd length, then it also contains a cycle of odd length.
This proves the following characterization of bipartite graphs.

Theorem

If G is a graph, then the following statements are equivalent:

- G is bipartite.
- $\chi(G) \leq 2$.
- G contains no cycles of odd length.
Definition

A subset $U \subseteq V(G)$ is called a **clique** (klika), if the induced subgraph $G[U]$ is a complete graph.
Definition

A **maximal clique** (maksimalna klika) is a clique that is not contained in any other clique. A **largest clique** (največja klika) is a clique with the largest number of vertices among all cliques.

\[\omega(G) = \text{“the size of the largest clique in } G\text{“}. \]

- Since \(\chi(K_n) = n \), it follows that \(\chi(G) \geq \omega(G) \).
The Brooks theorem

(Brooks) Let G be a graph. Then

$$\omega(G) \leq \chi(G) \leq \Delta(G) + 1.$$

Moreover, $\chi(G) \leq \Delta(G)$ unless G is a complete graph or a cycle of odd length.
Proof of the Brooks theorem

- WLOG: G is connected.
- We already know that $\omega(G) \leq \chi(G)$. So we need to show two things:
 1. $\chi(G) \leq \Delta(G) + 1$.
 2. If $G \not\simeq K_n$ or C_{2m+1}, then $\chi(G) \leq \Delta(G)$.

Finding a $(\Delta + 1)$-coloring is easy:
- Let $\{1, \ldots, \Delta + 1\}$ be the set of colors. Order the vertices of G in some linear order. Color the first vertex with color 1.
- Suppose that we have already colored the first m vertices. Let v be the next vertex, and let $c \in \{1, \ldots, \Delta + 1\}$ be the smallest integer that does not appear as a color of some neighbor of v. Color v with the color c.
- Repeat this procedure until all vertices are colored.
Lecture 3 – Graphs continued

Graphs continued
Proof of the Brooks theorem – killing unessential greens

- In the rest of the proof, we may assume that \(G \not\cong K_n \) or \(C_{2m+1} \). It remains to show, that we may change the \((\Delta + 1)\)-coloring in such a way that one of the colors “disappears”.
- For the rest of the proof: \(\Delta + 1 = “green” \).
- Let \(S = “the set of green vertices” \).
- If there is \(v \in S \) such that one of the non-green colors does not appear among its neighbors, then we may use this color for \(v \). Apply this throughout \(S \). This procedure is called “killing unessential greens”.

- After unessential greens are “killed”, we get a \((\Delta + 1)\)-coloring in which each green vertex \(v \) has valence \(\Delta \), and no two neighbors of \(v \) are of the same color.
Proof of the Brooks theorem – pushing the green color

The second procedure allow us to “push” the green color from any \(v \in S \) to any other \(x \in V(G) \) along any path \(P \) from \(v \) to \(x \).

1. Kill unessential \((\Delta + 1)\)s. If \(S = \emptyset \) or \(S = \{x\} \), then stop.

2. Let \(u \) be the first vertex on the path from \(v \) to \(x \). Let \(c \) be the color of \(u \). Since we killed unessential greens, no green neighbours of \(u \) have any other neighbours of color \(c \).
Proof of the Brooks theorem – pushing the green color

1. Change the color of green neighbors of \(u \) to \(c \), and change the color of \(u \) to green.

2. Go to step 1 with \(u \) in place of \(v \), and with \(P \) being the part of old \(P \) from \(u \) to \(x \).

This procedure changed the color of some old green vertices, and cyclically rotated the colors along \(P \).
Let x be a vertex of smallest valence. For each green v, choose a shortest path from v to x, and push the green color to x. Now x is the only green vertex.

If $\text{val}(x) < \Delta$, then there is a non-green color which does not appear among neighbors of x. Hence we can kill the green color at x, and finish.

It follows: We may thus assume that G is regular (all vertices have valence Δ).

The proof now splits into two cases:
- G is 3-connected;
- G is not 3-connected.
The proof of Brook’s theorem – the 3-connected case

- Suppose G is 3-connected.
- Since G is not complete, there exist $x \not\sim y$. Push the green color from all green vertices to x.
- Since there is no green color in $N(y)$, there exist $u, v \in N(y)$ of the same color.
Consider the graph $G' = G - u - v$. Since G is 3-connected, G' is connected. Choose a shortest path from x to y in G' and push the green color from x to y along this path.
This results in a proper coloring of G where the only green vertex is y, where u and v (two neighbors of y) have the same color. Therefore, the green color of y can be “killed”, giving a Δ-coloring of G.
Suppose now that G is not 3-connected.

The rest of the proof of is by induction on $n = |V(G)|$. By inspection, we see that the theorem holds for $n \leq 4$. Assume now that $n \geq 5$ and that theorem holds for all graphs with less than n vertices.

If $\Delta(G) = 1$, then $G \cong K_n^C$, and so $\chi(G) = 1$.

If $\Delta(G) = 2$, then $G \cong C_n$ or P_n, and the theorem holds.

Assume henceforth that $\Delta(G) \geq 3$.

Tomaž Pisanski, Alen Orbanič, and Primož Potočnik

Graphs continued
Suppose that G has a cut-vertex $\{v\}$, and let X_1, \ldots, X_m be the components of $G - v$.

By induction, each $X_i + v$ is $\Delta(G)$-colorable. By renaming colors in each X_i if necessary, we may assume that in all X_i, the vertex v has the same color. This gives a $\Delta(G)$-coloring of G.
Suppose now that G has a vertex-cut of size two: $\{x, y\}$.

In a similar way as in case $\kappa = 1$ we may use induction to show that G is Δ-colorable.

Homework H2: Finish the proof of the theorem in this case.
The Mycielski construction

- Let G be a graph on n vertices with at least one edge. Construct a new graph G^+ on $2n + 1$ vertices in the following way:
 - $V(G^+) = V(G) \cup \{v' : v \in V(G)\} \cup \{\infty\}$ (a disjoint union).
 - $E(G^+) = E(G) \cup \{v'u : vu \in E(G)\} \cup \{v'\infty : v \in V(G)\}$.
- Homework H3: Show that $\chi(G^+) = \chi(G) + 1$.
- Example: The graph, obtained in this way from C_5 is called the Grötzch graph.
Let $G = (V, E)$ be a graph and C a set of “colors”. We define edge-colorings in a similar way as vertex-colorings:

Definition

An *edge-coloring* (barvanje povezav) of G is a function $c: E \rightarrow C$. The coloring is *proper* if incident edges receive different colors. The graph G is k-edge-colorable (povezavno k-obarvljiv) if there exists a proper edge-coloring with $|C| = k$.

- The minimal integer k for which G is k-edge-colorable is called the *chromatic index* (kormatični indeks) of G.

$$\chi'(G) = \min\{k : G \text{ is } k - \text{edge–colorable}\}$$

- Note that $\chi'(G) = \chi(L(G))$.
Vizing’s theorem

- There is an obvious natural lower bound: $\chi'(G) \geq \Delta(G)$.
- The upper bound is given by Vizing’s theorem.

Theorem

\[
(Vizing) \quad \Delta(G) \leq \chi'(G) \leq \Delta(G) + 1
\]

- We skip the proof.
Graphs with $\chi'(G) = \Delta(G)$ are **graphs of class 1**, the others are of **class 2**.

- C_{2m} is of class 1, C_{2m+1} is of class 2.
- Hypercubes are of class 1
- The Petersen graph is of class 2.
- In general, determining χ' is difficult.
- For some graphs, this task is easier. For example, bipartite graphs.

Theorem

*(König) If G is bipartite, then $\chi'(G) = \Delta(G)$.***
Proof of König’s theorem

- By contradiction: Let k be a positive integer. Among all graphs with $\Delta = k$ choose a counterexample with the least number of edges.
- Choose an edge $e = xy$, such that $\Delta(G - e) = \Delta(G)$ (What if such an edge does not exist?).
- By hypothesis, $\chi'(G - e) = \Delta(G - e) = k$. Color the edges with k colors.
Proof of König’s theorem II

There is a color α, which does not appear at x, and a color β, which does not appear at y.

If $\alpha = \beta$, color e with α.

\begin{itemize}
 \item There is a color α, which does not appear at x, and a color β, which does not appear at y.
 \item If $\alpha = \beta$, color e with α.
\end{itemize}
Assume now that $\alpha \neq \beta$.

Consider the subgraph H induced by the edges of colors α and β. Clearly $\Delta(H) \leq 2$, so the connected components of H are paths or cycles.
Note that swappings colors α and β in any component of H gives a different proper coloring.

Since all paths from x to y are of odd length (G is bipartite!), x and y are in different components of H. Swap the colors α and β in a component containing x.
Finally, color \(e \) with \(\beta \).
A regular graph of valence 3 is called **cubic graph** (kubičen graf).

Homework H3. Show that every connected cubic graph with $\chi' = 3$ is 2-edge-connected.

On the other hand, it is not easy to find 2-edge-connected cubic graphs with $\chi' = 4$.

Such a graph is called a **snark**. (The name comes from a poem “The hunting of the Snark” by Lewis Carol.)

The smallest such graph is the Petersen graph.

Constructing new families of snarks is still a difficult task.
Matchings

Consider a proper edge-coloring of G. Consider the set M of edges colored with a fixed color. No vertex of G is incident with more than one edge from M.

Definition

A *matching* (prirejanje) in a graph G is a set $M \subseteq E(G)$ such that each $v \in V(G)$ is incident with at most one $e \in M$.

- Vertices, that *are* incident with some $e \in M$ are saturated (nasičen).
- If every vertex of G is saturated, then the matching is *perfect* (popolno prirejanje).
- A matching is *maximal* if it is the largest among all matching.
Maximal matchings are related to “stable sets”, “vertex covers” and “edge covers”

Definition

A **stable set** in G is a set $U \subseteq V(G)$ such that no two vertices in U are adjacent in G. A **vertex cover** in G is a set $U \subseteq V(G)$ such that every edge of G is incident with at least one vertex in U. An **edge cover** in G is a set $F \subseteq E(G)$ such that every vertex of G is incident with at least edge vertex in F.

- $\nu(G) := \text{“the size of a maximal matching } G\text{”}$;
- $\alpha(G) := \text{“the size of a largest stable set } G\text{”}$;
- $\tau(G) := \text{“the size of a smallest vertex cover of } G\text{”}$;
- $\rho(G) := \text{“the size of a smallest edge cover of } G\text{”}$.
Gallai’s theorem and the König-Egerváry theorem

Theorem

(Gallai, 1959) If G has no isolated vertices, then $
u(G) + \rho(G) = |V(G)|$.

Theorem

(König, Egerváry) If G is bipartite, then $\nu(G) = \tau(G)$.

We skip the proofs.
It is often difficult to decide, what is the size of a largest matching. For bipartite graphs, we have the following nice result:

Theorem (Hall) Let G be a bipartite graph with bipartition $V(G) = X \cup Y$. Then G has a matching in which every vertex of X is saturated if and only if $|N(S)| \geq |S|$ for every set $S \subseteq X$.

Here $N(S)$ is the set of vertices that are adjacent to some vertex in S.
Proof of Hall’s theorem

- **Proof.** One direction is obvious.
- For the other direction, we need the König-Egerváry theorem. Suppose that there is no matching in which every \(v \in X \) is saturated. Then \(\nu(G) < |X| \).
- By the König-Egerváry theorem, \(\nu(G) = \tau(G) \). Therefore, there is a vertex cover \(K \) with \(|K| < |X| \).
- Let \(S = X \setminus K \). Then \(N(S) \subseteq Y \cap K \), and so

\[
|S| = |X| - |K \cap X| = |X| - |K| + |Y \cap K| > N(S).
\]
Homework

H1 Finish the proof of the Brooks theorem in the case where the vertex-connectivity of the graph is 2.

H2 Show that \(\chi(G^+) = \chi(G) + 1 \).

H3 Show that every connected cubic graph with \(\chi' = 3 \) is 2-edge-connected.