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Introduction

• graphical models are used and studied in various applied statistical

and computational fields:

– machine learning and artificial intelligence

– computational biology

– statistical signal/image processing

– communication and information theory

– statistical physics

– .....

• based on correspondences between graph theory and probability

theory

• important but difficult problems:

– computing likelihoods, marginal distributions, modes

– estimating model parameters and structure from (noisy) data
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Outline
1. Recap

(a) Background on graphical models

(b) Some applications and challenging problems

(c) Illustrations of some message-passing algorithms

2. Exponential families and variational methods

(a) What is a variational method (and why should I care)?

(b) Graphical models as exponential families

(c) Variational representations from conjugate duality

3. Exact techniques as variational methods

(a) Gaussian inference on arbitrary graphs

(b) Belief-propagation/sum-product on trees (e.g., Kalman filter; α-β alg.)

(c) Max-product on trees (e.g., Viterbi)

4. Approximate techniques as variational methods

(a) Mean field and variants

(b) Belief propagation and extensions on graphs with cycles

(c) Convex methods and upper bounds

(d) Tree-reweighted max-product and linear programs
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Undirected graphical models

Based on correspondences between graphs and random variables.

• given an undirected graph G = (V, E), each node s has an

associated random variable Xs

• for each subset A ⊆ V , define XA := {Xs, s ∈ A}.

PSfrag replacements

1

2

3 4

5 6

7
PSfrag replacements

A

B

S

Maximal cliques (123), (345), (456), (47) Vertex cutset S

• a clique C ⊆ V is a subset of vertices all joined by edges

• a vertex cutset is a subset S ⊂ V whose removal breaks the graph

into two or more pieces
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Factorization and Markov properties

The graph G can be used to impose constraints on the random vector

X = XV (or on the distribution p) in different ways.

Markov property: X is Markov w.r.t G if XA and XB are

conditionally indpt. given XS whenever S separates A and B.

Factorization: The distribution p factorizes according to G if it can

be expressed as a product over cliques:

p(x) =
1

Z

∏

C∈C

exp
{
θC(xC)

}
︸ ︷︷ ︸

compatibility function on clique C

Theorem: (Hammersley-Clifford) For strictly positive p(·), the

Markov property and the Factorization property are equivalent.
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Challenging computational problems

Frequently, it is of interest to compute various quantities associated

with an undirected graphical model:

(a) the log normalization constant log Z

(b) local marginal distributions or other local statistics

(c) modes or most probable configurations

Relevant dimensions often grow rapidly in graph size =⇒ major

computational challenges.

Example: Consider a naive approach to computing the normalization constant for

binary random variables:

Z =
X

x∈{0,1}n

Y

C∈C

exp
˘

θC(xC)
¯

Complexity scales exponentially as 2n.
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Gibbs sampling in the Ising model

• binary variables on a graph G = (V, E) with pairwise interactions:

p(x; θ) ∝ exp
{∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

}

• Update x
(m+1)
s stochastically based on values

x
(m)
N (s) at neighbors:

1. Choose s ∈ V at random.

2. Sample u ∼ U(0, 1) and update

x(m+1)
s =

8
><
>:

1 if u ≤ {1 + exp[−(θs +
P

t∈N (s)

θstx
(m)
t )]}−1

0 otherwise

,

• sequence {x(m)} converges (in a stochastic sense) to a sample from

p(x; θ)
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Mean field updates in the Ising model

• binary variables on a graph G = (V, E) with pairwise interactions:

p(x; θ) ∝ exp
{∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

}

• simple (deterministic) message-passing algorithm involving

variational parameters νs ∈ (0, 1) at each node
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1. Choose s ∈ V at random.

2. Update νs based on neighbors

{νt, t ∈ N (s)}:

νs ←−
˘
1 + exp[−(θs +

X

t∈N (s)

θstνt)]
¯−1

Questions:

• principled derivation? • convergence and accuracy?
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Sum and max-product algorithms: On trees

Exact for trees, but approximate for graphs with cycles.

PSfrag replacements
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Mts ≡ message from node t to s

Γ(t) ≡ neighbors of node t

Sum-product: for marginals

(generalizes α− β algorithm; Kalman filter)

Max-product: for MAP configurations

(generalizes Viterbi algorithm)

Update: Mts(xs) ←
P

x′

t
∈Xt

n
exp

h
θst(xs, x

′
t) + θt(x

′
t)
i Q

v∈Γ(t)\s

Mvt(xt)
o

.

Marginals: p(xs; θ) ∝ exp{θt(xt)}
Q

t∈Γ(s) Mts(xs).
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Sum and max-product: On graphs with cycles

• what about applying same updates on graph with cycles?

• updates need not converge (effect of cycles)

• seems naive, but remarkably successful in many applications
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Mts ≡ message from node t to s

Γ(t) ≡ neighbors of node t

Sum-product: for marginals

Max-product: for modes

Questions: • meaning of these updates for graphs with cycles?

• convergence? accuracy of resulting “marginals”?
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Variational methods

• “variational”: umbrella term for optimization-based formulation of

problems, and methods for their solution

• historical roots in the calculus of variations

• modern variational methods encompass a wider class of methods

(e.g., dynamic programming; finite-element methods)

Variational principle: Representation of a quantity of interest û as

the solution of an optimization problem.

1. allows the quantity û to be studied through the lens of the

optimization problem

2. approximations to û can be obtained by approximating or relaxing

the variational principle
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Illustration: A simple variational principle

Goal: Given a vector y ∈ R
n and a symmetric matrix Q Â 0, solve the

linear system Qu = y.

Unique solution û(y) = Q−1y can be obtained by matrix inversion.

Variational formulation: Consider the function Jy : R
n → R defined by

Jy(u) :=
1

2
uT Qu− yT u.

It is strictly convex, and the minimum is uniquely attained:

û(y) = arg min
u∈Rn

Jy(u) = Q−1y.

Various methods for solving linear systems (e.g., conjugate gradient)

exploit this variational representation.
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Useful variational principles for graphical models?

Consider an undirected graphical model:

p(x) =
1

Z

∏

C∈C

exp
{
θC(xC)

}
.

Core problems that arise in many applications:

(a) computing the log normalization constant log Z

(b) computing local marginal distributions (e.g., p(xs) =
∑

xt,t 6=s p(x))

(c) computing modes or most likely configurations x̂ ∈ arg maxx p(x)

Approach: Develop variational representations of all of these

problems by exploiting results from:

(a) exponential families (e.g.,Brown, 1986)

(b) convex duality (e.g., Rockafellar,1973)
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Maximum entropy formulation of graphical models

• suppose that we have measurements µ̂ of the average values of

some (local) functions φα : Xn → R

• in general, will be many distributions p that satisfy the

measurement constraints Ep[φα(x)] = µ̂

• will consider finding the p with maximum “uncertainty” subject to

the observations, with uncertainty measured by entropy

H(p) = −
∑

x

p(x) log p(x).

Constrained maximum entropy problem: Find p̂ to solve

max
p∈P

H(p) such that Ep[φα(x)] = µ̂

• elementary argument with Lagrange multipliers shows that solution

takes the exponential form

p̂(x; θ) ∝ exp
{∑

α∈I

θαφα(x)
}
.
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Exponential families

φα : Xn → R ≡ sufficient statistic

φ = {φα, α ∈ I} ≡ vector of sufficient statistics

θ = {θα, α ∈ I} ≡ parameter vector

ν ≡ base measure (e.g., Lebesgue, counting)

• parameterized family of densities (w.r.t. ν):

p(x; θ) = exp
{∑

α

θαφα(x) − A(θ)
}

• cumulant generating function (log normalization constant):

A(θ) = log
( ∫

exp{〈θ, φ(x)〉}ν(dx)
)

• set of valid parameters Θ := {θ ∈ R
d | A(θ) < +∞}.

• will focus on regular families for which Θ is open.
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Examples: Scalar exponential families

Family X ν log p(x; θ) A(θ)

Bernoulli {0, 1} Counting θx−A(θ) log[1 + exp(θ)]

Gaussian R Lebesgue θ1x + θ2x2 −A(θ) 1
2
[θ1 + log 2πe

−θ2
]

Exponential (0, +∞) Lebesgue θ (−x)−A(θ) − log θ

Poisson {0, 1, 2 . . .} Counting θx−A(θ) exp(θ)

h(x) = 1/x!
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Graphical models as exponential families

• choose random variables Xs at each vertex s ∈ V from an arbitrary

exponential family (e.g., Bernoulli, Gaussian, Dirichlet etc.)

• exponential family can be the same at each node (e.g., multivariate

Gaussian), or different (e.g., mixture models).
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Key requirement: The collection φ of sufficient statistics must

respect the structure of G.
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Example: Discrete Markov random field

PSfrag replacements

θst(xs, xt)
θs(xs)θt(xt)

Indicators: I j(xs) =

8

<

:

1 if xs = j

0 otherwise

Parameters: θs = {θs;j , j ∈ Xs}

θst = {θst;jk, (j, k) ∈ Xs ×Xt}

Compact form: θs(xs) :=
P

j θs;jI j(xs)

θst(xs, xt) :=
P

j,k θst;jkI j(xs)I k(xt)

Density (w.r.t. counting measure) of the form:

p(x; θ) ∝ exp
˘X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

Cumulant generating function (log normalization constant):

A(θ) = log
X

x∈Xn

exp
˘X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯
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Special case: Hidden Markov model

• Markov chain {X1, X2, . . .} evolving in time, with noisy observation

Yt at each time t

PSfrag replacements
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• an HMM is a particular type of discrete MRF, representing the

conditional p(x |y; θ)

• exponential parameters have a concrete interpretation

θ23(x2, x3) = log p(x3 |x2)

θ5(x5) = log p(y5 |x5)

• the cumulant generating function A(θ) is equal to the log likelihood

log p(y; θ)
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Example: Multivariate Gaussian

U(θ): Matrix of natural parameters φ(x): Matrix of sufficient statistics
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Edgewise natural parameters θst = θts must respect graph structure:
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(a) Graph structure (b) Structure of [Z(θ)]st = θst.
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Example: Mixture of Gaussians

• can form mixture models by combining different types of random

variables

• let Ys be conditionally Gaussian given the discrete variable Xs with

parameters γs;j = (µs;j , σ
2
s;j):

PSfrag replacements

Ys

Xs p(xs; θs)

p(ys |xs; γs)

Xs ≡ mixture indicator

Ys ≡ mixture of Gaussian

• couple the mixture indicators X = {Xs, s ∈ V } using a discrete

MRF

• overall model has the exponential form

p(y,x; θ, γ) ∝
∏

s∈V

p(ys |xs; γs) exp
{∑

s∈V

θs(xs)+
∑

(s,t)∈E

θst(xs, xt)
]}

.
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Conjugate dual functions

• conjugate duality is a fertile source of variational representations

• any function f can be used to define another function f ∗ as follows:

f∗(v) := sup
u∈Rn

{
〈v, u〉 − f(u)

}
.

• easy to show that f∗ is always a convex function

• how about taking the “dual of the dual”? I.e., what is (f ∗)∗?

• when f is well-behaved (convex and lower semi-continuous), we

have (f∗)∗ = f , or alternatively stated:

f(u) = sup
v∈Rn

{
〈u, v〉 − f∗(v)

}
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Geometric view: Supporting hyperplanes

Question: Given all hyperplanes in R
n × R with normal (v,−1), what

is the intercept of the one that supports epi(f)?

Epigraph of f :

epi(f) := {(u, β) ∈ R
n+1 | f(u) ≤ β}.

PSfrag replacements

f(u)

u
(v,−1)

β

−cb

−ca

〈v, u〉 − ca

〈v, u〉 − cb

Analytically, we require the smallest c ∈ R such that:

〈v, u〉 − c ≤ f(u) for all u ∈ R
n

By re-arranging, we find that this optimal c∗ is the dual value:

c∗ = sup
u∈Rn

˘
〈v, u〉 − f(u)

¯
.
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Example: Single Bernoulli

Random variable X ∈ {0, 1} yields exponential family of the form:

p(x; θ) ∝ exp
˘

θ x
¯

with A(θ) = log
ˆ

1 + exp(θ)
˜

.

Let’s compute the dual A∗(µ) := sup
θ∈R

˘

µθ − log[1 + exp(θ)]
¯

.

(Possible) stationary point: µ = exp(θ)/[1 + exp(θ)].

PSfrag replacements

A(θ)

θ

〈µ, θ〉 −A∗(µ)

PSfrag replacements

A(θ)

θ
〈µ, θ〉 − c

(a) Epigraph supported (b) Epigraph cannot be supported

We find that: A∗(µ) =

8

<

:

µ log µ + (1− µ) log(1− µ) if µ ∈ [0, 1]

+∞ otherwise.
.

Leads to the variational representation: A(θ) = maxµ∈[0,1]

˘

µ · θ −A∗(µ)
¯

.
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More general computation of the dual A
∗

• consider the definition of the dual function:

A∗(µ) = sup
θ∈Rd

{
〈µ, θ〉 −A(θ)

}
.

• taking derivatives w.r.t θ to find a stationary point yields:

µ−∇A(θ) = 0.

• Useful fact: Derivatives of A yield mean parameters:

∂A

∂θα

(θ) = Eθ[φα(x)] :=

∫
φα(x)p(x; θ)ν(x).

Thus, stationary points satisfy the equation:

µ = Eθ[φ(x)] (1)
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Computation of dual (continued)

• assume solution θ(µ) to equation (1) exists

• strict concavity of objective guarantees that θ(µ) attains global

maximum with value

A∗(µ) = 〈µ, θ(µ)〉 −A(θ(µ))

= Eθ(µ)

h
〈θ(µ), φ(x)〉 −A(θ(µ))

i

= Eθ(µ)[log p(x; θ(µ))]

• recall the definition of entropy :

H(p(x)) := −

Z ˆ
log p(x)

˜
p(x)ν(dx)

• thus, we recognize that A∗(µ) = −H(p(x; θ(µ))) when equation (1) has a

solution

Question: For which µ ∈ R
d does equation (1) have a solution

θ(µ)?
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Sets of realizable mean parameters

• for any distribution p(·), define a vector µ ∈ R
d of mean

parameters:

µα :=

∫
φα(x)p(x)ν(dx)

• now consider the setM(G; φ) of all realizable mean

parameters:

M(G; φ) =
{
µ ∈ R

d
∣∣ µα =

∫
φα(x)p(x)ν(dx) for some p(·)

}

• for discrete families, we refer to this set as a marginal polytope,

denoted by MARG(G; φ)
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Examples of M: Gaussian MRF

φ(x) Matrix of sufficient statistics U(µ) Matrix of mean parameters
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• Gaussian mean parameters are specified by a single semidefinite

constraint as MGauss = {µ ∈ R
n+(n

2) | U(µ) º 0}.

Scalar case:

U(µ) =

2
4 1 µ1

µ1 µ11

3
5
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Examples of M: Discrete MRF

• sufficient statistics:
I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for(s, t) ∈ E, (j, k) ∈ Xs ×Xt

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

PSfrag replacements aj

MARG(G)

〈aj , µ〉 = bj

µe • denote the set of realizable µs and µst

by MARG(G)

• refer to it as the marginal polytope

• extremely difficult to characterize for

general graphs
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Geometry and moment mapping

PSfrag replacements

Θ
M

θ µ

For suitable classes of graphical models in exponential form, the

gradient map ∇A is a bijection between Θ and the interior ofM.

(e.g., Brown, 1986; Efron, 1978)
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Variational principle in terms of mean parameters

• The conjugate dual of A takes the form:

A∗(µ) =

8
<
:
−H(p(x; θ(µ))) if µ ∈ intM(G;φ)

+∞ if µ /∈ clM(G;φ).

Interpretation:

– A∗(µ) is finite (and equal to a certain negative entropy) for any µ that is

globally realizable

– if µ /∈ clM(G;φ), then the max. entropy problem is infeasible

• The cumulant generating function A has the representation:

A(θ)| {z } = sup
µ∈M(G;φ)

{〈θ, µ〉 − A∗(µ)}

| {z }
,

cumulant generating func. max. ent. problem overM

• in contrast to the “free energy” approach, solving this problem provides

both the value A(θ) and the exact mean parameters bµα = Eθ[φα(x)]
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Alternative view: Kullback-Leibler divergence

• Kullback-Leibler divergence defines “distance” between probability

distributions:

D(p || q) :=

Z h
log

p(x)

q(x)

i
p(x)ν(dx)

• for two exponential family members p(x; θ1) and p(x; θ2), we have

D(p(x; θ1) || p(x; θ2)) = A(θ2)−A(θ1)− 〈µ1, θ2 − θ1〉

• substituting A(θ1) = 〈θ1, µ1〉 −A∗(µ1) yields a mixed form:

D(p(x; θ1) || p(x; θ2)) ≡ D(µ1 || θ2) = A(θ2) + A∗(µ1)− 〈µ1, θ2〉

Hence, the following two assertions are equivalent:

A(θ2) = sup
µ1∈M(G;φ)

{〈θ2, µ1〉 − A∗(µ1)}

0 = inf
µ1∈M(G;φ)

D(µ1 || θ2)
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Challenges

1. In general, mean parameter spaces M can be very difficult to

characterize (e.g., multidimensional moment problems).

2. Entropy A∗(µ) as a function of only the mean parameters µ

typically lacks an explicit form.

Remarks:

1. Variational representation clarifies why certain models are

tractable.

2. For intractable cases, one strategy is to solve an approximate form

of the optimization problem.
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A(i): Multivariate Gaussian (fixed covariance)

Consider the set of all Gaussians with fixed inverse covariance Q Â 0.

• potentials φ(x) = {x1, . . . , xn} and natural parameter θ ∈ Θ = R
n.

• cumulant generating function:

density

A(θ) = log

Z

Rn

z }| {

exp
˘ nX

s=1

θsxs

¯
exp

˘
−

1

2
x

T Qx
¯
dx

| {z }
base measure

• completing the square yields A(θ) = 1
2
θT Q−1θ + constant

• straightforward computation leads to the dual

A∗(µ) = 1
2
µT Qµ− constant

• putting the pieces back together yields the variational principle

A(θ) = sup
µ∈Rn

˘
θT µ−

1

2
µT Qµ

¯
+ constant

• optimum is uniquely obtained at the familiar Gaussian mean bµ = Q−1θ.
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A(ii): Multivariate Gaussian (arbitrary covariance)

• matrices of sufficient statistics, natural parameters, and mean

parameters:

φ(x) =

2
41

x

3
5
h
1 x

i
, U(θ) :=

2
4 0 [θs]

[θs] [θst]

3
5 U(µ) := E

(2
41

x

3
5
h
1 x

i)

• cumulant generating function:

A(θ) = log

Z
exp

n
〈〈U(θ), φ(x)〉〉

o
dx

• computing the dual function:

A∗(µ) = −
1

2
log det U(µ)−

n

2
log 2πe,

• exact variational principle is a log-determinant problem:

A(θ) = sup
U(µ)Â0, [U(µ)]11=1

˘
〈〈U(θ), U(µ)〉〉+

1

2
log det U(µ)

¯
+

n

2
log 2πe

• solution yields the normal equations for Gaussian mean and covariance.
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B: Belief propagation/sum-product on trees

• discrete variables Xs ∈ {0, 1, . . . , ms − 1} on a tree T = (V, E)

• sufficient statistics: indicator functions for each node and edge

I j(xs) for s = 1, . . . n, j ∈ Xs

I jk(xs, xt) for (s, t) ∈ E, (j, k) ∈ Xs ×Xt.

• exponential representation of distribution:

p(x; θ) ∝ exp
˘X

s∈V

θs(xs) +
X

(s,t)∈E

θst(xs, xt)
¯

where θs(xs) :=
P

j∈Xs
θs;jI j(xs) (and similarly for θst(xs, xt))

• mean parameters are simply marginal probabilities, represented as:

µs(xs) :=
X

j∈Xs

µs;jI j(xs), µst(xs, xt) :=
X

(j,k)∈Xs×Xt

µst;jkI jk(xs, xt)

• the marginals must belong to the following marginal polytope:

MARG(T ) := { µ ≥ 0 |
X

xs

µs(xs) = 1,
X

xt

µst(xs, xt) = µs(xs) },
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Decomposition of entropy for trees

• by the junction tree theorem, any tree can be factorized in terms of

its marginals µ ≡ µ(θ) as follows:

p(x; θ) =
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)

• taking logs and expectations leads to an entropy decomposition

H(p(x; θ)) = −A∗(µ(θ)) =
∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst)

where

Single node entropy: Hs(µs) := −
∑

xs
µs(xs) log µs(xs)

Mutual information: Ist(µst) :=
∑

xs,xt
µst(xs, xt) log µst(xs,xt)

µs(xs)µt(xt)
.

• thus, the dual function A∗(µ) has an explicit and easy form
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Exact variational principle on trees

• putting the pieces back together yields:

A(θ) = max
µ∈MARG(T )

˘
〈θ, µ〉+

X

s∈V

Hs(µs)−
X

(s,t)∈E(T )

Ist(µst)
¯
.

• let’s try to solve this problem by a (partial) Lagrangian formulation

• assign a Lagrange multiplier λts(xs) for each constraint

Cts(xs) := µs(xs)−
P

xt
µst(xs, xt) = 0

• will enforce the normalization (
P

xs
µs(xs) = 1) and non-negativity

constraints explicitly

• the Lagrangian takes the form:

L(µ; λ) = 〈θ, µ〉+
X

s∈V

Hs(µs)−
X

(s,t)∈E(T )

Ist(µst)

+
X

(s,t)∈E

ˆX

xt

λst(xt)Cst(xt) +
X

xs

λts(xs)Cts(xs)
˜
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Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t µs and µst yields

∂L

∂µs(xs)
= θs(xs)− log µs(xs) +

X

t∈N (s)

λts(xs) + C

∂L

∂µst(xs, xt)
= θst(xs, xt)− log

µst(xs, xt)

µs(xs)µt(xt)
− λts(xs)− λst(xt) + C ′

• setting these partial derivatives to zero and simplifying:

µs(xs) ∝ exp
˘

θs(xs)
¯

Y

t∈N (s)

exp
˘

λts(xs)
¯

µs(xs, xt) ∝ exp
˘

θs(xs) + θt(xt) + θst(xs, xt)
¯

×
Y

u∈N (s)\t

exp
˘

λus(xs)
¯

Y

v∈N (t)\s

exp
˘

λvt(xt)
¯

• enforcing the constraint Cts(xs) = 0 on these representations yields the
familiar update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
X

xt

exp
˘

θt(xt) + θst(xs, xt)
¯

Y

u∈N (t)\s

Mut(xt)
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C: Max-product algorithm on trees

Question: What should be the form of a variational principle for

computing modes?

Intuition: Consider behavior of the family {p(x; βθ) | β > 0}.

0 0.2 0.4 0.6 0.8 1

Low Beta

0 0.2 0.4 0.6 0.8 1

High Beta

(a) Low β (b) High β

Conclusion: Problem of computing modes should be related to

limiting form (β → +∞) of computing marginals.
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Limiting form of the variational principle

• consider the variational principle for a discrete MRF of the form

p(x; βθ):

1

β
A(βθ) =

1

β
max

µ∈MARG

˘
〈βθ, µ〉 −A∗(µ)

¯
.

• taking limits as β → +∞ yields:

max
x∈XN

{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

︸ ︷︷ ︸

= max
µ∈MARG(G)

{
〈θ, µ〉

}

︸ ︷︷ ︸
.

computation of modes linear program

• thus, computing the mode in a discrete MRF is equivalent to a

linear program over the marginal polytope
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Max-product on tree-structured MRFs

• recall the max-product (belief revision) updates:

Mts(xs) ← max
xt

exp
{
θt(xt) + θst(xs, xt)

} ∏

u∈N (t)\s

Mut(xt)

• for trees, the variational principle (linear program) takes the

especially simple form

max
µ∈MARG(T )

{∑

s∈V

θs(xs)µs(xs) +
∑

(s,t)∈E

θst(xs, xt)µst(xs, xt)
}

• constraint set is the marginal polytope for trees

MARG(T ) := { µ ≥ 0 |
∑

xs

µs(xs) = 1,
∑

xt

µst(xs, xt) = µs(xs) },

• a similar Lagrangian formulation shows that max-product is an

iterative method for solving this linear program (details in Wainwright

& Jordan, 2003)
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Outline
1. Recap

(a) Background on graphical models

(b) Some applications and challenging problems

(c) Illustrations of some message-passing algorithms

2. Exponential families and variational methods

(a) What is a variational method (and why should I care)?

(b) Graphical models as exponential families

(c) Variational representations from conjugate duality

3. Exact techniques as variational methods

(a) Gaussian inference on arbitrary graphs

(b) Belief-propagation/sum-product on trees (e.g., Kalman filter; α-β alg.)

(c) Max-product on trees (e.g., Viterbi)

4. Approximate techniques as variational methods

(a) Mean field and variants

(b) Belief propagation and extensions

(c) Convex relaxations and upper bounds

(d) Tree-reweighted max-product and linear programs
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A: Mean field theory

Difficulty: (typically) no explicit form for −A∗(µ) (i.e., entropy as a

function of mean parameters) =⇒ exact variational principle is

intractable.

Idea: Restrict µ to a subset of distributions for which −A∗(µ) has a

tractable form.

Examples:

(a) For product distributions p(x) =
∏

s∈V µs(xs), entropy decomposes

as −A∗(µ) =
∑

s∈V Hs(xs).

(b) Similarly, for trees (more generally, decomposable graphs), the

junction tree theorem yields an explicit form for −A∗(µ).

Definition: A subgraph H of G is tractable if the entropy has an

explicit form for any distribution that respects H.
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Geometry of mean field

• let H represent a tractable subgraph (i.e., for which

A∗ has explicit form)

• letMtr(G; H) represent tractable mean parameters:

Mtr(G; H) := {µ| µ = Eθ[φ(x)] s. t. θ respects H}.

1 2

65

9

3

4

7 8

1 2

65

9

3

4

7 8

PSfrag replacements

µe

M

Mtr
• under mild conditions, Mtr is a non-

convex inner approximation to M

• optimizing overMtr (as opposed toM)

yields lower bound :

A(θ) ≥ sup
eµ∈Mtr

˘
〈θ, eµ〉 −A∗(eµ)

¯
.
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Alternative view: Minimizing KL divergence

• recall the mixed form of the KL divergence between p(x; θ) and

p(x; θ̃):

D(µ̃ || θ) = A(θ) + A∗(µ̃)− 〈µ̃, θ〉

• try to find the “best” approximation to p(x; θ) in the sense of KL

divergence

• in analytical terms, the problem of interest is

inf
eµ∈Mtr

D(µ̃ || θ) = A(θ) + inf
eµ∈Mtr

{
A∗(µ̃)− 〈µ̃, θ〉

}

• hence, finding the tightest lower bound on A(θ) is equivalent to

finding the best approximation to p(x; θ) from distributions with

µ̃ ∈Mtr
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Example: Naive mean field algorithm for Ising model

• consider completely disconnected subgraph H = (V, ∅)

• permissible exponential parameters belong to subspace

E(H) = {θ ∈ R
d | θst = 0 ∀ (s, t) ∈ E}

• allowed distributions take product form p(x; θ) =
∏

s∈V

p(xs; θs), and

generate

Mtr(G; H) = {µ | µst = µsµt, µs ∈ [0, 1] }.

• approximate variational principle:

max
µs∈[0,1]



X

s∈V

θsµs+
X

(s,t)∈E

θstµsµt−
ˆ

X

s∈V

µs log µs+(1−µs) log(1−µs)
˜

ff

.

• Co-ordinate ascent: with all {µt, t 6= s} fixed, problem is strictly

concave in µs and optimum is attained at

µs ←−
{
1 + exp[−(θs +

∑

t∈N (s)

θstµt)]
}−1
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Example: Structured mean field for coupled HMM

(a) (b)

• entropy of distribution that respects H decouples into sum: one

term for each chain.

• structured mean field updates are an iterative method for finding

the tightest approximation (either in terms of KL or lower bound)
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B: Belief propagation on arbitrary graphs

Two main ingredients:

1. Exact entropy −A∗(µ) is intractable, so let’s approximate it.

The Bethe approximation A∗
Bethe(µ) ≈ A∗(µ) is based on the exact

expression for trees:

−A∗
Bethe(µ) =

∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst).

2. The marginal polytope MARG(G) is also difficult to characterize, so

let’s use the following (tree-based) outer bound:

LOCAL(G) := { τ ≥ 0 |
∑

xs

τs(xs) = 1,
∑

xt

τst(xs, xt) = τs(xs) },

Note: Use τ to distinguish these locally consistent pseudomarginals from globally

consistent marginals.
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Geometry of belief propagation

• combining these ingredients leads to the Bethe variational principle:

max
τ∈LOCAL(G)

{
〈θ, τ〉+

∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(τst)
}

• belief propagation can be derived as an iterative method for solving

a Lagrangian formulation of the BVP (Yedidia et al., 2002)

• belief propagation uses a polyhedral outer

approximation toM

• for any graph, LOCAL(G) ⊇ MARG(G).

• equality holds ⇐⇒ G is a tree.

PSfrag replacements

µint

LOCAL(G)

MARG(G)
µfrac
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Illustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals τs, τst:

Locally consistent

(pseudo)marginals

3

2

1
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�
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�

• can verify that τ ∈ LOCAL(G), and that τ is a fixed point of belief

propagation (with all constant messages)

• however, τ is globally inconsistent

Note: More generally: for any τ in the interior of LOCAL(G), can

construct a distribution with τ as a BP fixed point.
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High-level perspective

• message-passing algorithms (e.g., mean field, belief propagation)

are solving approximate versions of exact variational principle in

exponential families

• there are two distinct components to approximations:

(a) can use either inner or outer bounds toM

(b) various approximations to entropy function −A∗(µ)

• mean field: non-convex inner bound and exact form of entropy

• BP: polyhedral outer bound and non-convex Bethe approximation

• Kikuchi and variants: tighter polyhedral outer bounds and better

entropy approximations

(e.g.,Yedidia et al., 2002)
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Generalized belief propagation on hypergraphs

• a hypergraph is a natural generalization of a graph

• it consists of a set of vertices V and a set E of hyperedges, where

each hyperedge is a subset of V

• convenient graphical representation in terms of poset diagrams

1 2

3 4

1	4

1 2

2

4 3

3
1 2 3 2 3 4 

2 3

1 2 4 5
52

2 3 5 6

5

54 7 8
5 8

5 6 8 9

4 5 5 6

(a) Ordinary graph (b) Hypertree (width 2) (c) Hypergraph

• descendants and ancestors of a hyperedge h:

D+(h) := {g ∈ E | g ⊆ h }, A+(h) := {g ∈ E | g ⊇ h }.
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Hypertree factorization and entropy

• hypertrees are an alternative way to describe junction trees

• associated with any poset is a Möbius function ω : E × E → Z

ω(g, g) = 1, ω(g, h) = −
∑

{f | g⊆f⊂h}

ω(g, f)

Example: For Boolean poset, ω(g, h) = (−1)|h|\|g|.

• use the Möbius function to define a correspondence between the
collection of marginals µ := {µh} and new set of functions
ϕ := {ϕh}:

log ϕh(xh) =
X

g∈D+(h)

ω(g, h) log µg(xg), log µh(xh) =
X

g∈D+(h)

log ϕg(xg).

• any hypertree-structured distribution is guaranteed to factor as:

p(x) =
∏

h∈E

ϕh(xh).
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Examples: Hypertree factorization

1. Ordinary tree:

ϕs(xs) = µs(xs) for any vertex s

ϕst(xs, xt) =
µst(xs, xt)

µs(xs) µt(xt)
for any edge (s, t)

2. Hypertree:

ϕ1245 =
µ1245

µ25

µ5

µ45

µ5
µ5

ϕ45 =
µ45

µ5

ϕ5 = µ5

1 2 4 5
52

2 3 5 6

54 5 5 6

54 7 8
5 8

Combining the pieces:

p =
µ1245

µ25

µ5

µ45

µ5
µ5

µ2356
µ25

µ5

µ56

µ5
µ5

µ4578
µ45

µ5

µ58

µ5
µ5

µ25

µ5

µ45

µ5

µ56

µ5

µ58

µ5
µ5 =

µ1245 µ2356 µ4578

µ25 µ45
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Building augmented hypergraphs

Better entropy approximations via augmented hypergraphs.
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1 2 2 3
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52

2

3 6

6

1
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(a) Original (b) Clustering (c) Full covering

1 2 4 5
52

2 3 5 6

5

54 7 8
5 8

5 6 8 9

4 5 5 6

1 2 4 5
52

2 3 5 6

54 7 8
5 8

5 6 8 9

4 5 5 6

(d) Kikuchi (e) Fails single counting
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C. Convex relaxations and upper bounds

Possible concerns with the Bethe/Kikuchi problems and variations?

(a) lack of convexity ⇒ multiple local optima, and substantial

algorithmic complications

(b) failure to bound the log partition function

Goal: Techniques for approximate computation of marginals and

parameter estimation based on:

(a) convex variational problems ⇒ unique global optimum

(b) relaxations of exact problem ⇒ upper bounds on A(θ)

Usefulness of bounds:

(a) interval estimates for marginals

(b) approximate parameter estimation

(c) large deviations (prob. of rare events)
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Bounds from “convexified” Bethe/Kikuchi problems

Idea: Upper bound −A∗(µ) by convex combination of tree-structured

entropies.

PSfrag replacementsPSfrag replacements PSfrag replacements PSfrag replacements

−A∗(µ) ≤ −ρ(T 1)A∗(µ(T 1)) − ρ(T 2)A∗(µ(T 2)) − ρ(T 3)A∗(µ(T 3))

• given any spanning tree T , define the moment-matched tree distribution:

p(x; µ(T )) :=
Y

s∈V

µs(xs)
Y

(s,t)∈E

µst(xs, xt)

µs(xs) µt(xt)

• use −A∗(µ(T )) to denote the associated tree entropy

• let ρ = {ρ(T )} be a probability distribution over spanning trees
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Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope, denoted T(G). (Edmonds, 1971)
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Optimal bounds by tree-reweighted message-passing

Recall the constraint set of locally consistent marginal distributions:

LOCAL(G) = { τ ≥ 0 |
X

xs

τs(xs) = 1,

| {z }

X

xs

τst(xs, xt) = τt(xt)

| {z }
}.

normalization marginalization

Theorem: (Wainwright, Jaakkola, & Willsky, 2002; To appear in IEEE-IT)

(a) For any given edge weights ρe = {ρe} in the spanning tree polytope,

the optimal upper bound over all tree parameters is given by:

A(θ) ≤ max
τ∈LOCAL(G)

˘
〈θ, τ〉+

X

s∈V

Hs(τs)−
X

(s,t)∈E

ρstIst(τst)
¯
.

(b) This optimization problem is strictly convex, and its unique optimum

is specified by the fixed point of ρe-reweighted message passing:

M∗
ts(xs) = κ

X

x′

t
∈Xt

(
exp

hθst(xs, x
′
t)

ρst

+ θt(x
′
t)
i

Q
v∈Γ(t)\s

ˆ
M∗

vt(xt)
˜ρvt

ˆ
M∗

st(xt)
˜(1−ρts)

)
.
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Semidefinite constraints in convex relaxations

Fact: Belief propagation and its hypergraph-based generalizations all

involve polyhedral (i.e., linear) outer bounds on the marginal polytope.

Idea: Use semidefinite constraints to generate more global outer

bounds.

Example: For the Ising model, relevant mean parameters are µs = p(Xs = 1) and

µst = p(Xs = 1, Xt = 1).

Define y = [1 x]T , and consider the second-order moment matrix:

E[yyT ] =

2

6

6

6

6

6

6

6

6

6

4

1 µ1 µ2 . . . µn

µ1 µ1 µ12 . . . µ1n

µ2 µ12 µ2 . . . µ2n

...
...

...
...

...

µn µn1 µn2 . . . µn

3

7

7

7

7

7

7

7

7

7

5

It must be positive semidefinite, which imposes (an infinite number of) linear

constraints on µs, µst.
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Illustrative example

Locally consistent

(pseudo)marginals
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Second-order

moment matrix




µ1 µ12 µ13

µ21 µ2 µ23

µ31 µ32 µ3


 =




0.5 0.4 0.1

0.4 0.5 0.4

0.1 0.4 0.5




Not positive-semidefinite!
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Log-determinant relaxation

• based on optimizing over covariance matrices M1(µ) ∈ SDEF1(Kn)

Theorem: Consider an outer bound OUT(Kn) that satisfies:

MARG(Kn) ⊆ OUT(Kn) ⊆ SDEF1(Kn)

For any such outer bound, A(θ) is upper bounded by:

max
µ∈OUT(Kn)

{
〈θ, µ〉+

1

2
log det

[
M1(µ)+

1

3
blkdiag[0, In]

]}
+

n

2
log(

πe

2
)

Remarks:

1. Log-det. problem can be solved efficiently by interior point methods.

2. Relevance for applications:

(a) Upper bound on A(θ).

(b) Method for computing approximate marginals.

(Wainwright & Jordan, 2003)
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Results for approximating marginals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strong +  

Weak +    

Strong +/−

Weak   +/−

Strong −  

Weak −    

Nearest−neighbor grid

Average error in marginal

LD
BP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strong +  

Weak +    

Strong +/−

Weak   +/−

Strong −  

Weak −    

Fully connected

Average error in marginal

LD
BP

(a) Nearest-neighbor grid (b) Fully connected

• average `1 error in approximate marginals over 100 trials

• coupling types: repulsive (−), mixed (+/−), attractive (+)
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D. Tree-reweighted max-product algorithm

• integer program (IP): optimizing cost function over a discrete space

(e.g., {0, 1}n)

• IPs computationally intractable in general, but graphical structure

can be exploited

• tree-structured IPs solvable in linear time with dynamic

programming (max-product message-passing)

• standard max-product algorithm applied to graphs with cycles, but

no guarantees in general

• a novel perspective:

– “tree-reweighted” max-product for arbitrary graphs

– optimality guarantees for reweighted message-passing

– forges connection between max-product message passing and linear

programming (LP) relaxations
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Some previous theory on ordinary max-product

• analysis of single-cycle graphs (Aji & McEliece, 1998; Horn, 1999; Weiss,

1998)

• guarantees for attenuated max-product updates (Frey & Koetter, 2001)

• locally optimal on “tree-plus-loop” neighborhoods (Weiss & Freeman,

2001)

• strengthened optimality results and computable error bounds on

the gap (Wainwright et al., 2003)

• exactness after finite # iterations for max. weight bipartite

matching (Bayati, Shah & Sharma, 2005)
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Standard analysis via computation tree

• standard tool: computation tree of message-passing updates

(Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)
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(a) Original graph (b) Computation tree (4 iterations)

• level t of tree: all nodes whose messages reach the root (node 1)

after t iterations of message-passing
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Illustration: Non-exactness of standard max-product

Intuition:

• max-product is solving (exactly) a modified problem on the computation

tree

• nodes not equally weighted in computation tree ⇒ max-product can

output an incorrect configuration
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(a) Diamond graph Gdia (b) Computation tree (4 iterations)

• for example: asymptotic node fractions in this computation tree:
h
f(1) f(2) f(3) f(4)

i
=

h
0.2393 0.2607 0.2607 0.2393

i
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A whole family of non-exact examples

• consider the following integer program on Gdia:

PSfrag replacements

1

2
3

4

α

α

β

β

θs(xs)

8

<

:

αxs if s = 1 or s = 4

βxs if s = 2 or s = 3

θst(xs, xt) =

8

<

:

−γ if xs 6= xt

0 otherwise

• for γ sufficiently large, optimal solution is always either

04 = [0 0 0 0] or 14 = [1 1 1 1].

• max-product and optimum give different decision boundaries:

Optimum boundary: x̂ =





14 if 0.25α + 0.25β ≥ 0

04 otherwise

Max-product boundary: x̂ =





14 if 0.2393α + 0.2607β ≥ 0

04 otherwise
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Incorrect max-product decision boundary
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Tree-reweighted max-product algorithm

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ max
x′

t
∈Xt

(
exp

hθst(xs, x
′
t)

ρst| {z }
+ θt(x

′
t)
i

Q
v∈Γ(t)\s

z }| {ˆ
Mvt(xt)

˜ρvt

ˆ
Mst(xt)

˜(1−ρts)

| {z }

)
.

reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.

2. Key differences:

• Messages are reweighted with ρst ∈ [0, 1].

• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].

• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.
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TRW max-product computes pseudo-max-marginals

• observe that the mode-finding problem can be solved via the exact

max-marginals:

µs(xs) := max
{x′ | x′

s
=xs}

p(x′), µst(xs, xt) := max
{x′ | x′

s
=xs,x′

t
=xt}

p(x′)

• any message fixed point M∗ defines a set of pseudo-max-marginals

{ν∗
s , ν∗

st} at nodes and edges

• will show these TRW message-passing never “lies”, and establish

optimality guarantees for suitable fixed points

• guarantees require the following conditions:

(a) Weight choice: the edge weights ρ = {ρst | (s, t) ∈ E} are

“suitably” chosen (in the spanning tree polytope)

(b) Strong tree agreement: There exists an x∗ such that:

– Nodewise optimal: x∗
s belongs to arg maxxs

ν∗
s (xs).

– Edgewise optimal: (x∗
s , x∗

t ) belongs to arg maxxs,xt
ν∗

st(xs, xt).
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Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope, denoted T(G). (Edmonds, 1971)
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TRW max-product never “lies”

Set-up: Any fixed point ν∗ that satisfies the strong tree agreement

(STA) condition defines a configuration x∗ = (x∗
1, . . . , x

∗
n) such that

x∗
s ∈ arg max

xs

ν∗
s (xs),

︸ ︷︷ ︸
(x∗

s, x
∗
t ) ∈ arg max

xs,xt

ν∗
st(xs, xt)

︸ ︷︷ ︸
Node optimality Edge-wise optimality

Theorem 1 (Arbitrary problems) (Wainwright et al., 2003):

(a) Any STA configuration x∗ is provably MAP-optimal for the graph

with cycles.

(b) Any STA fixed point is a dual-optimal solution to a certain

“tree-based” linear programming relaxation.

Hence, TRW max-product acknowledges failure by lack of strong tree

agreement.
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Performance of tree-reweighted max-product

Key question: When can strong tree agreement be obtained?

• performance guarantees for particular problem classes:

(a) guarantees for submodular and related binary problems

(Kolmogorov & Wainwright, 2005)

(b) LP decoding of error-control codes

(Feldman, Wainwright & Karger, 2005; Feldman et al., 2004)

• empirical work on TRW max-product and tree LP relaxation:

(a) LP decoding of error-control codes

(Feldman, Wainwright & Karger, 2002, 2003, 2005; Koetter & Vontobel,

2003, 2005)

(b) data association problem in sensor networks

(Chen et al., SPIE 2003)

(c) solving stereo-problems using MRF-based formulation

(Kolmogorov, 2005; Weiss, Meltzer & Chanover, 2005)
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Basic idea: convex combinations of trees

Observation: Easy to find its MAP-optimal configurations on trees:

OPT(θ(T )) :=
˘
x ∈ Xn | x is MAP-optimal for p(x; θ(T ))

¯
.

Idea: Approximate original problem by a convex combination of trees.

ρ = {ρ(T )} ≡ probability distribution over spanning trees

θ(T ) ≡ tree-structured parameter vector

PSfrag replacementsPSfrag replacementsPSfrag replacementsPSfrag replacements

∗ θ∗ = ρ(T 1)θ(T 1) + ρ(T 2)θ(T 2) + ρ(T 3)θ(T 3)

† OPT(θ∗) ⊇ OPT(θ(T 1)) ∩ OPT(θ(T 2)) ∩ OPT(θ(T 3)).
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Tree fidelity and agreement

Goal: Want a set {θ(T )} of tree-structured parameters and probability

distribution {ρ(T )} such that:

Combining trees yields original problem.

Fidelity to original:

︷ ︸︸ ︷
θ∗ =

∑

T

ρ(T )θ(T ).

Tree agreement: The set
⋂

T

OPT(θ(T ))

︸ ︷︷ ︸
is non-empty.

Configurations on which all trees agree.

Lemma: Under the fidelity condition, the set
⋂

T OPT(θ(T )) of

configurations on which trees agree is contained within the optimal set

OPT(θ∗) for the original problem.

Consequence: If we can find a set of tree parameters that satisfy both

conditions, then any configuration x∗ ∈
⋂

T OPT(θ(T )) is

MAP-optimal for the original problem on the MRF with cycles.
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Message-passing as negotiation among trees

Intuition:

• reweighted message-passing ⇒ negotiation among the trees

• ultimate goal ⇒ adjust messages to obtain tree agreement.

• when tree agreement is obtained, the configuration x∗ is

MAP-optimal for the graph with cycles

• hence solving a sequence of tree problems (very easy to do! )

suffices to find an optimum on the MRF (hard in general)
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Dual perspective: linear programming relaxation

• Reweighted message-passing is attempting to find a tight upper

bound on the convex function A∞(θ∗) := maxx∈Xn〈θ∗, φ(x)〉.

• The dual of this problem is a linear programming relaxation of the

integer program.

• any unconstrained integer program (IP) can be re-written as a LP

over the convex hull of all possible solutions (Bertsimas & Tsitsiklis,

1997)

• the IP maxx∈{0,1}n

{∑
s∈V θs(xs) +

∑
(s,t)∈E θst(xs, xt)

}
is exactly

the same as the linear program (LP)

max
µs,µst∈MARG(G)

{∑

s∈V

∑

xs

µs(xs)θs(xs)+
∑

(s,t)∈E

∑

xs,xt

θst(xs, xt)µst(xs, xt)
}

• here MARG(G) is the marginal polytope of all realizable marginal

distributions µs and µst
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Geometric perspective of LP relaxation

PSfrag replacements

µint

LOCAL(G)

MARG(G)
µfrac

• relaxation is based on replacing the exact marginal polytope (very

hard to characterize!) with the tree relaxation

LOCAL(G) := { τ ≥ 0 |
∑

xs

τs(xs) = 1,
∑

xt

τst(xs, xt) = τs(xs) },

• leads to a (poly-time solvable) linear programming relaxation
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Guarantees for submodular and binary problems

• stronger optimality assertions can be made for particular classes of

problems

• important problem class: binary quadratic programs (i.e., modes of

pairwise graphical model with binary variables)

• subclass of binary quadratic programs: supermodular interactions:

θst(0, 0) + θst(1, 1)︸ ︷︷ ︸ ≥ θst(1, 0) + θst(0, 1).︸ ︷︷ ︸
agreement disagreement

• supermodular maximization can be performed in polynomial-time

(max-flow)

Theorem 2: (Binary supermodular) (Kolmogorov & Wainwright, 2005)

The TRW max-product algorithm always succeeds for binary

supermodular problems.
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Partial information

Question: Can TRW message-passing still yield useful (partial)

information when strong tree agreement does not hold?

Theorem 2: (Binary persistence) (Kolmogorov & Wainwright, 2005; Hammer

et al., 1984)

Let S ⊆ V be the subset of vertices for which there exists a single point

x∗
s ∈ arg maxxs

ν∗
s (xs). Then for any optimal solution y ∈ OPT(θ∗), it

holds that ys = x∗
s.

Some outstanding questions:

• what fraction of variables are correctly determined in “typical”

problems?

• do similar partial validity results hold for more general (non-binary)

problems?

84



Some experimental results: amount of frustration
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Some experimental results: coupling strength
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Disparity computation in stereo vision

• estimate depth in scenes based on two (or more) images taken from

different positions

• one powerful source of stereo information:

– biological vision: disparity from offset eyes

– computer vision: disparity from offset cameras

• challenging (computational) problem: estimate the disparity at

each point of an image based on a stereo pair

• broad range of research in both visual neuroscience and computer

vision
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Global approaches to disparity computation

• wide range of approaches to disparity in computer vision (see, e.g.,

Scharstein & Szeliski, 2002)

• global approaches: disparity map based on optimization in an MRF

PSfrag replacements

θst(ds, dt)

θs(ds)θt(dt)

• grid-structured graph G = (V, E)

• ds ≡ disparity at grid position s

• θs(ds) ≡ image data fidelity term

• θst(ds, dt) ≡ disparity coupling

• optimal disparity map bd found by solving MAP estimation problem for

this Markov random field

• computationally intractable (NP-hard) in general, but TRW

max-product and other message-passing algorithms can be applied
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Middlebury stereo benchmark set

• standard set of benchmarked examples for stereo algorithms

(Scharstein & Szeliski, 2002)

• Tsukuba data set: Image sizes 384× 288× 16 (W ×H ×D)

(a) Original image (b) Ground truth disparity
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Comparison of different methods

(a) Scanline dynamic programming (b) Graph cuts

(c) Ordinary belief propagation (d) Tree-reweighted max-product

(a), (b): Scharstein & Szeliski, 2002; (c): Sun et al., 2002 (d): Weiss, et al., 2005;
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Summary and future directions

• variational methods are based on converting statistical and

computational problems to optimization:

(a) complementary to sampling-based methods (e.g., MCMC)

(b) a variety of new “relaxations” remain to be explored

• many open questions:

(a) prior error bounds available only in special cases

(b) extension to non-parametric settings?

(c) hybrid techniques (variational and MCMC)

(d) variational methods in parameter estimation

(e) fast techniques for solving large-scale relaxations (e.g., SDPs,

other convex programs)
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