Complexity of Discrete Energy Minimization Problems

Mengtian (Martin) Li
Carnegie Mellon University

Alexander Shekhovtsov
Graz University of Technology

Daniel Huber
Carnegie Mellon University
Energy Minimization

- Used in many CV applications

3D Room Layout
[Schwing and Urtasun, 2012]
Energy Minimization

- Used in many CV applications

Semantic Segmentation
[Ren et al, 2012]
Energy Minimization

- Used in many CV applications

Shape and Image In-painting
[Shekhovtsov et al, 2012]
Energy Minimization

- Used in many CV applications
- Pairwise and higher order

$$\min_{x \in \mathcal{L}^V} \sum_{u \in V} f_u(x_u) + \sum_{(u,v) \in \mathcal{E}} f_{uv}(x_u, x_v)$$
- But is it efficient?

Shape and Image In-painting
[Shekhovtsov et al, 2012]
Energy Minimization

- Used in many CV applications
- Pairwise and higher order
 \[
 \min_{x \in \mathcal{X}} \sum_{u \in \mathcal{V}} f_u(x_u) + \sum_{(u,v) \in \mathcal{E}} f_{uv}(x_u, x_v)
 \]
- But is it efficient?
- In general, NP-hard
- There are tractable classes

Shape and Image In-painting
[Shekhovtsov et al, 2012]

Bounded Treewidth
Binary Outerplanar
Convex Interaction
Submodular

P Optimization

NP-hard

Mengtian Li, Alexander Shekhovtsov, Daniel Huber
ECCV Poster # 8
Energy Minimization

- Used in many CV applications
- Pairwise and higher order
 \[\min_{x \in \mathcal{L}^V} \sum_{u \in V} f_u(x_u) + \sum_{(u, v) \in \mathcal{E}} f_{uv}(x_u, x_v) \]
- But is it efficient?
- In general, NP-hard
- There are tractable classes
- Growing corpus of general “approximate” inference methods
- Learning Project with QPBO
Energy Minimization

- Used in many CV applications
- Pairwise and higher order

$$\min_{x \in \mathcal{L}^\mathcal{V}} \sum_{u \in \mathcal{V}} f_u(x_u) + \sum_{(u,v) \in \mathcal{E}} f_{uv}(x_u, x_v)$$

Quadratic Pseudo-Boolean Optimization (QPBO):

$$\min_{x \in \{0,1\}^\mathcal{V}} \sum_{u \in \mathcal{V}} a_u x_u + \sum_{(u,v) \in \mathcal{E}} a_{uv} x_u x_v$$

- Learning Project with QPBO
 - Difficult instances during learning
Energy Minimization

- Used in many CV applications
- Pairwise and higher order
 \[\min_{x \in \mathcal{L}^V} \sum_{u \in V} f_u(x_u) + \sum_{(u,v) \in \mathcal{E}} f_{uv}(x_u, x_v) \]
- But is it efficient?
- In general, NP-hard
- There are tractable classes
- Growing corpus of general “approximate” inference methods
- Learning Project with QPBO
 - Difficult instances during learning
 - Could benefit from approximation guarantees
- **We find QPBO and general energy minimization to be inapproximable**
NP-hard Problems Vary Greatly in Approximability

- Approximation Ratio: $f(x)/f(x^*), f(x^*) > 0$

- Classes of approximation:
 - PTAS - ratio $1+\varepsilon$ in polynomial time (knapsack, Euclidean TSP)
 - APX - constant approximation ratio
 - log-APX - logarithmic in bit-length
 - poly-APX - polynomial

- APX / log-APX indicate more practical classes
 - Algorithms can build on achieving guarantees
 - Much better ratios per instance

- APX-hard is not too bad! How hard is QPBO?

Mengtian Li, Alexander Shekhovtsov, Daniel Huber
Which Energy Problems are not in APX?

- class exp-APX:
 - Approximation ratio exponential in bit length
 - Suffices to find any feasible solution

Theorem: QPBO (energy with 2 labels) is complete in exp-APX
- Any problem from exp-APX can be reduced to QPBO
- In polynomial time
- While preserving approximation ratio

Theorem: Planar energy with 3+ labels is complete in exp-APX

Mengtian Li, Alexander Shekhovtsov, Daniel Huber
Proof Scheme

Turing Machine

- AP-reduction
 - [Opronen & Mannila 09]

Weighted 3-SAT

- AP-reduction (using Ishikawa’s reduction)

QPBO

- AP-reduction

Planar Energy with 3 labels

- Weighted 3-SAT
 - QPBO
 - General Energy Minimization
 - Planar with 3+ labels

NP-hard

- exp-APX
 - QPBO

poly-APX

- log-APX
 - Metric Labeling
 - Potts Model
 - Truncated Linear
 - MAX-CUT
 - Planar Vertex Cover
 - Convex Interaction
 - Binary Outerplanar
 - Submodular
 - Bounded Treewidth

P Optimization
Take Away Message

- Energy minimization problems vary in approximation ratio
- Bounded approximation ratio
 - Indicates a class of practical interest
 - Useful for algorithm design (Primal-Dual)
- Do not try to prove approximation guarantee if
 - Model includes QPBO/planar 3-label/general energy minimization
 - Or you can build AP-reduction from them