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Basics of probability

• Definition

• Laws

• Random variables
• Distributions
• Discrete variables
• Continuous variables
• Expected value, variance
• Joint distributions
• Independence
• Combinations
• Sampling



Probability: defintion

• The probability of an event refers to the likelihood that the event will 
occur

• If an experiment has 𝑛 outcomes that are equally likely and a subset 
of 𝑟 outcomes are classified as successful, then the probability of a 
successful outcome is 

𝑟

𝑛

• Example: urn with 3 red and 2 white balls, 𝑃𝑟 pick red =
3

5



Probability: defintion

• The relative frequency of an event is the number of times an event 
occurs, divided by the total number of trials. Probability can be seen 
as a long-term relative frequencies (number of trials goes to infinity)

• Example: coin toss with two events: H, T. 𝑃𝑟(𝐻) =
#𝐻 in 𝑛 experiments

𝑛

• Bayesian interpretations (belief)



Probability: notation

• 𝑃𝑟 𝐴 ∩ 𝐵 – probability of 𝐴 and 𝐵 both occurring (intersection) 

• 𝑃𝑟(𝐴’) – probability of 𝐴 NOT occurring (complement)

• 𝑃𝑟(𝐴|𝐵) – probability of 𝐴 occurring given that 𝐵 occurred 
(conditional)

• 𝑃𝑟(𝐴 ∪ 𝐵) – probability of A or B occurring (union)

• 𝑃𝑟(𝐴 ∩ 𝐵) = 0 – events are mutually exclusive (disjoint)



Probability: notation

• Example – 6 sided dice, events: 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6:
• 𝑃𝑟 𝐸3 ∩ 𝐸1 = 0

• 𝑃𝑟 𝐸3 𝐸>2) = ¼

• 𝑃𝑟(𝐸3 ∪ 𝐸1) = 1/3

• 𝑃𝑟(𝐸4’) = 5/6



Probability: laws

• 𝑃𝑟 𝐴 ∈ [0, 1]

• 𝑃𝑟 𝐴 = 1 − 𝑃𝑟 𝐴′

• 𝑃𝑟(𝐴 ∩ 𝐵) = 𝑃𝑟(𝐴)𝑃𝑟(𝐵|𝐴)
• If 𝑃𝑟(𝐴 ∩ 𝐵) = 𝑃𝑟(𝐴)𝑃𝑟(𝐵) we say that events are independent

• If 𝑃𝑟 𝐴 ∩ 𝐵 𝐶) = 𝑃𝑟 𝐴 𝐶 𝑃𝑟(𝐵|𝐶) we say that events are conditionally 
independent



Probability: laws

• 𝑃𝑟(𝐴 ∪ 𝐵) = 𝑃𝑟(𝐴) + 𝑃𝑟(𝐵) – 𝑃𝑟(𝐴 ∩ 𝐵)

• 𝑃𝑟 ∪𝑖 𝐴𝑖 ≤ σ𝑖 𝑃𝑟(𝐴𝑖), where 𝐴1, 𝐴2… is a countable set (Boole’s 
inequality)

• If 𝐵1, 𝐵2, … are mutually disjoint, whose union is the entire space, 
then: 𝑃𝑟 𝐴 = σ𝑛𝑃𝑟(𝐴 ∩ 𝐵𝑛) (total probability)



Probability: random variables

• Maps from events to real numbers

• Example: 
• events represent tossing a fair coin 𝑛 times (2𝑛 mutually exclusive equally 

probable events)

• 𝑋(𝑒) = #heads obtained in the event 𝑒

• 𝑋(𝑒) = 100 if all 𝑛 flips of 𝑒 result in heads and 0 instead

• When the value of a variable is determined by a chance event, that 
variable is called a random variable



Probability: random variables

• Discrete random variables map to a countable set
• total of roll of two dices: 2,3,… , 12

• customer count: 0,1,2,…

• Continuous random variables map to an uncountable set of numbers
• Task completion time (nonnegative)

• Price of a stock (nonnegative)

• Stock price move



Probability: distributions

• Probability distribution specifies the probability for a random variable to 
assume a particular value
• 𝑋: 𝑒𝑣𝑒𝑛𝑡 → ℝ - random variable
• Pr: 𝑒𝑣𝑒𝑛𝑡 → 0,1 - probability

• For discrete variables 𝑃 𝑥 ≡ 𝑃𝑟(𝑋 = 𝑥) is called probability mass 
function (pmf)

• For continuous variables 𝑓𝑋(𝑥) is called probability density function (pdf) 
such that Pr 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑎׬

𝑏
𝑓𝑋 𝑥 𝑑𝑥

• Cumulative density function (cdf) is defined as:

𝐹𝑋 𝑏 = Pr 𝑋 ≤ 𝑏 = න
∞

𝑏

𝑓𝑋 𝑥 𝑑𝑥



Probability: discrete distributions

• Example: 
• Bernoulli: X(H) = 1, X(T) = 0. P(X = 1) = p, P(X = 0) = 1-p
• Multinomial (example: unfair dice)
• events represent tossing a fair coin 𝑛 times (2𝑛 mutually exclusive equally 

probable events)
• 𝑋(𝑒) = #heads obtained in the event 𝑒

• 𝑃 𝑋 = 𝑘 =
𝑛
𝑘

2𝑛

• 𝑋(𝑒) = 100 if all 𝑛 flips of 𝑒 result in heads and 0 instead

• 𝑃(𝑋 = 𝑘) =

1

2𝑛
; if 𝑘 = 100

1 −
1

2𝑛
; if k = 0

0; else



Probability: continuous distributions

• 𝑈[𝑎, 𝑏] • 𝒩 𝜇, 𝜎

•



Lognormal

• If 𝑋 ~ 𝑁(𝜇, 𝜎) then
Y = ln(X) has a lognormal
distribution

• Notation: 𝑙𝑛𝑁(𝜇, 𝜎)



Probability: expected value, variance

• Is there a “typical” value (location)? How spread is the distribution - is 
the distribution spikey or flat (spread)? The answers summarize the 
shape of the distribution.

• Sometimes the distributions are completely defined by a few 
parameters (summaries) 

• Expected value 𝐸(𝑋) and variance 𝑉𝑎𝑟(𝑋) are two very important 
location and spread measures of distributions

• Standard deviation: 𝑆𝑡𝑑(𝑋) = 𝑉𝑎𝑟(𝑋)



Probability: expected value, variance

• Discrete distribution
• 𝐸(𝑋) = σ𝑖 𝑥𝑖 ⋅ 𝑃 𝑥𝑖

• 𝑉𝑎𝑟 𝑋 = σ𝑖 𝑥𝑖 − 𝐸 𝑋
2
⋅ 𝑃 𝑥𝑖



Probability: expected value, variance

• Continuous distribution
• 𝐸(𝑋) = 𝑥׬ ⋅ 𝑓𝑋 𝑥 𝑑𝑥

• 𝑉𝑎𝑟 𝑋 = ׬ 𝑥 − 𝐸 𝑋
2
⋅ 𝑓𝑋 𝑥 𝑑𝑥

• Examples

• 𝑋~𝑁(𝜇, 𝜎)
• 𝐸(𝑋) = 𝜇

• 𝑉𝑎𝑟 𝑋 = 𝜎2

• 𝑋~𝑙𝑛𝑁(𝜇, 𝜎)

• 𝐸 𝑋 = 𝑒𝜇+
𝜎2

2

• 𝑉𝑎𝑟 𝑋 = 𝑒2𝜇+𝜎
2
(𝑒𝜎

2
−1)



Probability: quantiles

• The median of a random variable X is a value m, so that Pr(𝑋 ≥
𝑚) = 0.5

• The 𝑘-th 𝑞-quantile is defined similarly as a number 𝑥 so that 

Pr 𝑋 < 𝑥 ≤
𝑘

𝑞

• Quartiles (k=4)



Probability: independence

• If 𝑋 and 𝑌 are random variables we can define a multivariate random
variable (𝑋, 𝑌) that maps an event 𝑒 to 𝑋 𝑒 , 𝑌 𝑒

• If the random variables are independent, then: 𝑃(𝑋, 𝑌) = 𝑃(𝑋)𝑃(𝑌)
in the discrete case and 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥) ⋅ 𝑓𝑌(𝑦)



Probability: sampling

• How to sample from the uniform distribution?
• Physical methods

• Pseudo-random generators

• How to sample from a distribution whose cdf F we know?

• Answer: Inverse transform sampling
• 1. Generate a random u from Uniform[0,1].

• 2. Return the value x such that F(x) = u.

• IID (independent identically distributed)

samples



Statistical inference

• Probabilities describe populations

• Statistics: generating conclusions about a population from a noisy 
sample
• Elections

• Weather

• Estimation
• point

• interval

• Hypothesis testing



Point estimates: mean

• Distributions and parameters vs samples and estimates

• Unknown variable 𝑋 with a defined mean 𝜇

• We get a iid sample of n values 𝑆𝑛 = {𝑋1, … , 𝑋𝑛}

• Goal: estimate 𝜇 based on the sample

• Estimators map samples (sets) to estimates (numbers) of the parameters

• Sample mean estimate: 𝜇∗ =
1

𝑛
σ𝑖𝑋𝑖

• How close are 𝜇∗ and 𝜇?

• Note: 𝜇∗ is random since it is a function (average) of random quantities



Point estimates: variance

• Distributions and parameters vs samples and estimates

• Unknown variable 𝑋

• We get a iid sample of n values 𝑆𝑛 = {𝑋1, … , 𝑋𝑛}

• Estimate 𝑉𝑎𝑟(𝑋)

• Sample variance estimator:  
1

𝑛−1
σ𝑖 𝑋𝑖 − 𝜇∗

2



Point estimates: bias

• Distributions and parameters vs samples and estimates

• Unknown variable 𝑋

• We get a iid sample of n values 𝑆𝑛 = {𝑋1, … , 𝑋𝑛}

• We estimate a parameter (for example 𝜇)

• If we repeatedly did this over many random sample sets 𝑆𝑛 and get a 
set of estimates, would their average be close to the real 𝜇?

• If the answer is YES then the estimator is said to be unbiased



Point estimates: median

• Distributions and parameters vs samples and estimates

• Unknown variable 𝑋

• We get a iid sample of n values 𝑆𝑛 = {𝑋1, … , 𝑋𝑛}

• Estimate 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)
• If the pdf of X is normal, then sample median estimator: 𝑚𝑒𝑑𝑖𝑎𝑛∗ =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑛)

• If the pdf is not symmetric then the sample median estimator may be biased

• Bias: does the average of estimate over many sample sets equal the true 
parameter



Interval estimate: confidence intervals

• Point estimators take sample sets and return numbers (estimates of 
the parameters)

• The estimates are random – how far are they from the true 
parameter?

• Interval estimators take sample sets and return intervals

• Confidence interval estimator at level 𝛼 (example 0.90) will contain 
the true parameter 𝛼 fraction cases (90%) if we repeated the 
experiment many times.

• Each time we will get a different parameter estimate and a different 
interval around it (the width will vary as well)



Interval estimate

• N(1,2)

• 100 experimets

• Each time we get
a different estimate 
𝜇∗ and a different
90% CI

• 87 intervals 
contain the true 
mu=1



Interval estimate

• How do we compute the interval given a sample?

• We used a bootstrap CI estimate – a resampling technique

• The idea:
• Use the sample 𝑆𝑛 to generate 𝑚 new datasets, each time by picking 𝑛 numbers 

from 𝑆𝑛 with replacement (elements can repeat) to create a sets 𝑆𝑛
1, 𝑆𝑛

2, … 𝑆𝑛
𝑚

• [10, 2, 5] -> {[10,10,5], [2,5,10], [5, 2, 2],[5,5,5]…}

• Compute 𝜇∗ on the sample 𝑆𝑛 and an estimate 𝜇∗
𝑖 for 𝑆𝑛

𝑖

• [17/3] -> {25/3, 17/3, 9/3, 15/3…}

• The differences {𝜇∗ − 𝜇∗
1, 𝜇∗ − 𝜇∗

2… , 𝜇∗ − 𝜇∗
𝑚} reveal how much the 

estimate varies
• { -8/3, 0, 8/3, 2/3 }



Interval estimate



Hypothesis testing

• Example
• 100 coin tosses, 54 heads, 46 tails

• Is the coin fair?

• This could be a result of an unfair coin with p  = 0.54, but would we be 
surprised if a fair coin resulted in 54H, 46T?

• What if we  threw 1000 coins and got: 540H, 440T?

• Two competing models – two hypothesis
• 𝐻0: coin is fair 𝑝 = 0.5

• 𝐻1: coin is not fair 𝑝 ≠ 0.5



Hypothesis testing

• Example
• 100 coin tosses, 54 heads, 46 tails
• Is the coin fair? Is this difference 54-46 very unexpected for fair coins?

• Two competing models – two hypothesis
• 𝐻0: coin is fair 𝑝 = 0.5
• 𝐻1: coin is not fair 𝑝 ≠ 0.5 (two sided test: p < 0.5 or p > 0.5)

• Strategy:
• Select a confidence level, for example 95%
• Assume that 𝐻0 is true and generate many sets of 100 tosses
• Compute the histogram of differences #H - #T
• If 54-46 = 8 is in the top 2.5% or bottom 2.5% (two sided test) then reject the null 

hypothesis
• Else, fail to reject (the difference is not large enough)



Hypothesis testing

• Example
• 100 coin tosses, 54 heads, 46 tails

• Is the coin fair? Is this difference 54-46 very unexpected for fair coins?

FAIL TO 
REJECT

Not a surprising difference under 𝐻0



Hypothesis testing

• Example
• 1000 coin tosses, 540 heads, 460 tails

• Is the coin fair? Is this difference 540-460 very unexpected for fair coins?

REJECT 𝐻0!

Surprising difference under 𝐻0



Hypothesis testing

• Example
• 10000 coin tosses, 5400 heads, 4600 tails

• Is the coin fair? Is this difference 5400-4600 very unexpected for fair coins?

REJECT 
𝐻0!

Very surprising difference under 𝐻0



Hypothesis tests

• Four scenarios
• 𝐻0 is true, fail to reject

• 𝐻0 is true, reject (FALSE DISCOVERY, Type I error)

• 𝐻0 is false, fail to reject (Type II error)

• 𝐻0 is false, reject (DISCOVERY)

• The power of a test: if the null is false, will we detect it?

• Larger samples => more power

• Bigger differences => more power (harder it is for the null to 
discourage us)



Different test outcomes

• Explore how different types of errors arise

• Fix the true parameter 𝑝 = 0.5 and use a sample size 𝑛 and see 
what happens over many scenarios (𝐻0 is true)

• Loop
• Generate a random sample

• Test 𝐻0: 𝑝 = 0.5

• Check result (one of four scenarios)

• Check the error table: how many times did we reject the null?

• How about when H_0



Different test outcomes

• How about when 𝐻0 is false

• Fix the true parameter 𝑝 = 0.6 and use a sample size 𝑛 and see 
what happens over many scenarios (𝐻0 is true)

• Loop
• Generate a random sample

• Test 𝐻0: 𝑝 = 0.5

• Check result (one of four scenarios)

• Check the error table: how many times did we fail to reject the null?


