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e Definition
* Laws

 Random variables

e Distributions
Discrete variables
Continuous variables
Expected value, variance
Joint distributions
Independence
Combinations
Sampling



Probability: defintion

* The probability of an event refers to the likelihood that the event will
occur

* If an experiment has n outcomes that are equally likely and a subset

of r outcomes are classified as successful, then the probability of a
r

successful outcome is -

* Example: urn with 3 red and 2 white balls, Pr(pick red) = %



Probability: defintion

* The relative frequency of an event is the number of times an event
occurs, divided by the total number of trials. Probability can be seen
as a long-term relative frequencies (number of trials goes to infinity)

#H in n experiments

* Example: coin toss with two events: H, T. Pr(H) = -

e Bayesian interpretations (belief)



Probability: notation

* Pr(A N B) — probability of A and B both occurring (intersection)
* Pr(A’) — probability of A NOT occurring (complement)

* Pr(A|B) — probability of A occurring given that B occurred
(conditional)

* Pr(A U B) — probability of A or B occurring (union)
* Pr(ANn B) = 0-events are mutually exclusive (disjoint)



Probability: notation

* Example — 6 sided dice, events: E4, E5, E3, E4, Ec, Eg:
« Pr(EsN E)) =0
* Pr(Es |Es;) = %
« Pr(E; U E;) = 1/3
. Pr(E,) =5/6



Probability: laws

. PT(A) € [0, 1]
* Pr(A) =1 — Pr(4")
. PT(A N B) = PT(A)PT(B|A)
* If Pr(ANn B) = Pr(A)Pr(B) we say that events are independent

* If Pr(AN B |C) = Pr(A|C)Pr(B|C) we say that events are conditionally
independent



Probability: laws

*Pr(AU B) = Pr(A) + Pr(B)- Pr(ANn B)

* Pr(U; 4;) < X.; Pr(4;), where A4, A, ... is a countable set (Boole’s
inequality)

* If B4, B,, ... are mutually disjoint, whose union is the entire space,
then: Pr(4) = ),,, Pr(A n B,)) (total probability)



Probability: random variables

* Maps from events to real numbers

* Example:

* events represent tossing a fair coin n times (2™ mutually exclusive equally
probable events)

* X(e) = #heads obtained in the event e
* X(e) = 100 if all n flips of e result in heads and 0 instead

* When the value of a variable is determined by a chance event, that
variable is called a random variable



Probability: random variables

* Discrete random variables map to a countable set
e total of roll of two dices: 2,3, ...,12
e customer count: 0,1,2, ...

* Continuous random variables map to an uncountable set of numbers
» Task completion time (nonnegative)
 Price of a stock (nonnegative)
* Stock price move



Probability: distributions

* Probability distribution specifies the probability for a random variable to
assume a particular value

e X: event - R -random variable
* Pr: event —» [0,1] - probability

* For discrete variables P(x) = Pr(X = x) is called probability mass
function (pmf)

* For continuous variables fX(x) is called probability density function (pdf)
such that Pr(a < X < b) = f fx (x)dx

e Cumulative density function (cdf) is defined as:
Fy(b) =Pr(X <b) = J fx(x)dx



Probability: discrete distributions

* Example:
e Bernoulli: X(H) =1, X(T)=0.P(X=1)=p, P(X=0)=1-p
* Multinomial (example: unfair dice)

* events represent tossing a fair coin n times (2™ mutually exclusive equally
probable events)

* X(e) = #heads obtained in the event e

C PX = k) =2

* X(e) = 100 if all n flips of e result in heads and 0 instead
(1,
—; if k =100

Zn;
* P(X = k) =<1—Zin;if1<=o
\ 0; else




Probability: continuous distributions

* Ula, b] * N (u,0)
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Lognormal

*If X ~N(u,o) then
Y = In(X) has a lognormal
distribution

* Notation: InN(u, o)




Probability: expected value, variance

* Is there a “typical” value (location)? How spread is the distribution - is
the distribution spikey or flat (spread)? The answers summarize the
shape of the distribution.

* Sometimes the distributions are completely defined by a few
parameters (summaries)

* Expected value E(X) and variance Var(X) are two very important
location and spread measures of distributions

* Standard deviation: Std(X) = \/Var(X)




Probability: expected value, variance

* Discrete distribution
¢ E(X) = Zixl- . P(Xi)
e Var(X) =¥,(x; — EX))* - P(x;)



Probability: expected value, variance

* Continuous distribution
c E(X) = [x fy(x)dx
e Var(X) = [(x —EX))" - fr(x)dx
* Examples
* XNN(:“) O-)
* E(X) =p
e Var(X) = o?
* X~InN(u, o)

0.2
« E(X) = e* 2
e Var(X) = e2#t9° (e —1)



Probability: quantiles

* The median of a random variable X is a value m, so that Pr(X >
m) = 0.5

* The k-th g-quantile is defined similarly as a number x so that

Pr(X < x) SS

e Quartiles (k=4) P

25% | 25% Iﬁk

2y Q2 Q3




Probability: independence

e If X and Y are random variables we can define a multivariate random
variable (X,Y) that maps an event e to (X(e), Y(e))

* If the random variables aresil_qsdependent, then: P(X,Y) = P(X)P(Y)
in the discrete case and fy y (x,y) = fx(x) - fy(y¥)



Probability: sampling

* How to sample from the uniform distribution?
* Physical methods
* Pseudo-random generators

* How to sample from a distribution whose cdf F we know?

* Answer: Inverse transform sampling y
* 1. Generate a random u from Uniform[0,1]. 1+
e 2. Return the value x such that F(x) = u. :
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Statistical inference

* Probabilities describe populations

e Statistics: generating conclusions about a population from a noisy
sample
* Elections
* Weather

e Estimation
* point
e interval

* Hypothesis testing



Point estimates: mean

 Distributions and parameters vs samples and estimates

* Unknown variable X with a defined mean u

* We get aiid sample of nvalues S,, = {X4, ..., X;;}

* Goal: estimate u based on the sample

e Estimators map samples (sets) to estimates (numbers) of the parameters

: 1
* Sample mean estimate: 1, = ;Zin-

* How close are u, and u?
* Note: u, is random since it is a function (average) of random quantities



Point estimates: variance

* Distributions and parameters vs samples and estimates
 Unknown variable X

* We get aiid sample of nvalues §,, = {Xy, ..., X;;}

* Estimate Var(X)

: . 1
« Sample variance estimator: Ezi(xi — u,)?



Point estimates: bias

* Distributions and parameters vs samples and estimates
 Unknown variable X

* We get aiid sample of nvalues §,, = {Xy, ..., X;;}

* We estimate a parameter (for example u)

* If we repeatedly did this over many random sample sets S,, and get a
set of estimates, would their average be close to the real u?

e If the answer is YES then the estimator is said to be unbiased



Point estimates: median

* Distributions and parameters vs samples and estimates
 Unknown variable X
* We get aiid sample of nvalues §,, = {Xy, ..., X;;}

* Estimate median(X)

* If the pdf of X is normal, then sample median estimator: median, =
median(S,)

* If the pdf is not symmetric then the sample median estimator may be biased

* Bias: does the average of estimate over many sample sets equal the true
parameter



Interval estimate: confidence intervals

* Point estimators take sample sets and return numbers (estimates of
the parameters)

* The estimates are random — how far are they from the true
parameter?

* Interval estimators take sample sets and return intervals

* Confidence interval estimator at level a (example 0.90) will contain
the true parameter a fraction cases (90%) if we repeated the
experiment many times.

* Each time we will get a different parameter estimate and a different
interval around it (the width will vary as well)



Interval estimate

* N(1,2)
* 100 experimets

* Each time we get
a different estimate

U, and a different
90% Cl

e 87 intervals
contain the true
mu=1




Interval estimate

* How do we compute the interval given a sample?
* We used a bootstrap Cl estimate — a resampling technique
* The idea:

* Use the sample §,, to generate m new datasets, each time by picking n numbers
from S,, with replacement (elements can repeat) to create a sets S}, S2, ... S™

* [10, 2, 5] ->{[10,10,5], [2,5,10], [5, 2, 2],[5,5,5]...}
 Compute i, on the sample S,, and an estimate yt for S}
« [17/3] > {25/3,17/3,9/3, 15/3...}

* The differences {y, — ut, . — p? ..., s — u} reveal how much the
estimate varies

« {-8/3,0,8/3,2/3}



Interval estimate

50 sample size, mu =1, mu, = 1.20188, ci = [0.692816, 1.70976] Bootstrap histogram of differences mu, - mu,

35 T T




Hypothesis testing

* Example
* 100 coin tosses, 54 heads, 46 tails
* |s the coin fair?

* This could be a result of an unfair coin with p = 0.54, but would we be
surprised if a fair coin resulted in 54H, 46T?

 What if we threw 1000 coins and got: 540H, 440T?

 Two competing models —two hypothesis
* Hy: coinisfairp = 0.5
 Hy: coinisnotfairp # 0.5



Hypothesis testing

* Example
* 100 coin tosses, 54 heads, 46 tails
* |s the coin fair? Is this difference 54-46 very unexpected for fair coins?

* Two competing models —two hypothesis

* Hy: coinisfairp = 0.5

* H,:coinis not fairp # 0.5 (two sided test: p < 0.5 0or p >0.5)
* Strategy:

* Select a confidence level, for example 95%
Assume that H is true and generate many sets of 100 tosses
Compute the histogram of differences #H - #T

If 54-46 = 8 is in the top 2.5% or bottom 2.5% (two sided test) then reject the null
hypothesis

Else, fail to reject (the difference is not large enough)



Hypothesis testing

* Example

* 100 coin tosses, 54 heads, 46 tails
* |s the coin fair? Is this difference 54-46 very unexpected for fair coins?

| |‘
: .. 101
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al ifferences #H - #T under null
/
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~__— Not a surprising difference under H,

FAIL TO
REJECT



Hypothesis testing

* Example
e 1000 coin tosses, 540 heads, 460 tails
* |s the coin fair? Is this difference 540-460 very unexpected for fair coins?

__— Surprising difference under H,

REJECT H,!

_—




Hypothesis testing

* Example
e 10000 coin tosses, 5400 heads, 4600 tails

* |s the coin fair? Is this difference 5400-4600 very unexpected for fair coins?

ize:10000, confidence level: 0.05, histogram of differences #H - #T under null

s /

~__— Very surprising difference under H,

REJECT
H,\



Hypothesis tests

* Four scenarios
* H, is true, fail to reject
* H, is true, reject (FALSE DISCOVERY, Type | error)
* H, is false, fail to reject (Type Il error)
* H, is false, reject (DISCOVERY)

* The power of a test: if the null is false, will we detect it?
* Larger samples => more power

* Bigger differences => more power (harder it is for the null to
discourage us)



Different test outcomes

* Explore how different types of errors arise

* Fix the true parameter p = 0.5 and use a sample size n and see
what happens over many scenarios (Hy, is true)

* Loop
e Generate a random sample
* TestHy: p = 0.5
e Check result (one of four scenarios)

* Check the error table: how many times did we reject the null?
* How about when H 0



Different test outcomes

* How about when Hj is false

* Fix the true parameter p = 0.6 and use a sample size n and see
what happens over many scenarios (Hy, is true)

* Loop
e Generate a random sample
* TestHy: p = 0.5
e Check result (one of four scenarios)

* Check the error table: how many times did we fail to reject the null?



