Deep multi-view representation learning of brain responses to natural stimuli

Leila Wehbe*, Anwar Nunez-Elizalde*, Alex Huth, Fatma Imamoglu, Natalia Bilenko, Jack Gallant

UC Berkeley
How does the human brain represent information?

- Machine Learning
- Non-invasive imaging, e.g. fMRI
An fMRI experiment

• generate time series of functional volumes
An fMRI experiment

- generate time series of functional volumes
An fMRI experiment

• generate time series of functional volumes
An fMRI experiment

• generate time series of functional volumes

1-2s
An fMRI experiment

• generate time series of functional volumes
An fMRI experiment
An fMRI experiment

• Typically:
 • Isolate a specific
 • Two or a few conditions
 • Find regions that differ in activity
An fMRI experiment

• Typically:
 • Isolate a specific
 • Two or a few conditions
 • Find regions that differ in activity

• Problems:
 • Hard to generalize
 • Infinite number of binary comparisons
Naturalistic experiments

- Make subjects do a real life complex task:
 - Watch movies
 - Listen / read stories
Video by James Gao and Anwar Nunez-Elizalde

Leila Wehbe
Naturalistic Experiments
Naturalistic Experiments

• No clear classes
Naturalistic Experiments

• No clear classes
 • Classification techniques are not useful/interesting here
Naturalistic Experiments

• No clear classes
 • Classification techniques are not useful/interesting here
• Highly complex input varying along multiple levels
Naturalistic Experiments

• No clear classes
 • Classification techniques are not useful/interesting here
• Highly complex input varying along multiple levels
 • Model it!
Build feature spaces!

• **Stories** have acoustic and semantic properties:
 • **phonemes**: Count of the occurrence of 39 phonemes
Build feature spaces!

• **Stories** have acoustic and semantic properties:
 • *word2vec*: Bag of words model of the words occurring at each 2s
Build feature spaces!

- **Movies** have visual and semantic properties:
 - **word2vec**: Bag of words model of the objects occurring at each 2s
Build feature spaces!

- Movies have visual and semantic properties:
 - motion energy filters: spatio-temporal Gabor pyramids

Video by Mark Lescroart
Build feature spaces!

- Movies have visual and semantic properties:
 - **motion energy**: spatio-temporal Gabor pyramids
Build feature spaces!

word2vec motion energy phonemes

time
Build feature spaces!

• Data from 4 subjects for both experiments
 • Story Listening (Huth et al. 2016)
 • Natural Movies (Nishimoto et al. 2011)
• Each subject has 30-50 thousand voxels
 • And ~ 3600 time points per experiment
Build feature spaces!

- Data from 4 subjects for both experiments
 - Story Listening (Huth et al. 2016)
 - Natural Movies (Nishimoto et al. 2011)
- Each subject has 30-50 thousand voxels
- And ~ 3600 time points per experiment
Build feature spaces!

- Data from 4 subjects for both experiments
 - Story Listening (Huth et al. 2016)
 - Natural Movies (Nishimoto et al. 2011)
- Each subject has 30-50 thousand voxels
 - And ~ 3600 time points per experiment

![Feature space diagram]

- word2vec
- motion energy
- phonemes
- subject i
Small data / complex brains
Small data / complex brains

• Small data scenario!
 • … and low SNR
Small data / complex brains

• Small data scenario!
 • … and low SNR

• We want to generalize:
 • Across subjects
 • Across feature spaces
 • And across experiments and cognitive domains
Useful Neuroimaging Tasks
Useful Neuroimaging Tasks

• Predict data from features
Useful Neuroimaging Tasks

- Predict data from features
- Predict features from data (decoding)
Useful Neuroimaging Tasks

• Predict data from features
• Predict features from data (decoding)
• Combine data across subjects
Useful Neuroimaging Tasks

• Predict data from features
• Predict features from data (decoding)
• Combine data across subjects
• Predict one subject from another
Cognitive Space Multi-view Autoencoder
Cognitive Space Multi-view Autoencoder

Cognitive Event

E.g., perception of:
“... was running away as fast as he could ...”
Cognitive Space Multi-view Autoencoder

E.g., perception of:
“... was running away as fast as he could ...”
Cognitive Event

Input Subject 1

Input word2vec

Cognitive Space Multi-view Autoencoder

E.g., perception of:
“... was running away as fast as he could ...”
E.g., perception of:
“… was running away as fast as he could …”
Cognitive Space Multi-view Autoencoder

E.g., perception of:
“... was running away as fast as he could ...”
Cognitive Event

Input Subject 1

Input Subject 2

Input Subject n

word2vec

Encoders

multiple views

Cognitive Event

E.g., perception of:
“... was running away as fast as he could ...”
Cognitive Space Multi-view Autoencoder

E.g., perception of:
“... was running away as fast as he could ...”
Cognitive Space Multi-view Autoencoder

E.g., perception of:
“... was running away as fast as he could ...”
Cognitive Space Multi-view Autoencoder

E.g., perception of:
“... was running away as fast as he could ...”
Estimation

Predict brain activity from stimulus features
Estimation

Input Subject 1

Cognitive Event
Cognitive Event

Input Subject 1

Estimation

Predict stimulus features from brain activity
Cognitive Event

Estimation

Input Subject 1

Cognitive Event
Estimation

Predict brain activity from other subject’s activity
Bottleneck Layer
Bottleneck Layer

Subject 1, Subject 2, ... Subject n
Bottleneck Layer

Subject 1, Subject 2, … Subject n

Input

Subject i
Bottleneck Layer

Subject 1, Subject 2, ... Subject n
Bottleneck Layer

Subject 1, Subject 2, … Subject n
Bottleneck Layer

Subject 1, Subject 2, ... Subject n
Bottleneck Layer

word2vec
Bottleneck Layer

(word2vec)

Bottleneck Layer

(word2vec)

Input
word2vec
Bottleneck Layer

word2vec
Bottleneck Layer

Recons. word2vec

word2vec
Bottleneck Layer

word2vec
Bottleneck Layer

word2vec \rightarrow phonemes
Bottleneck Layer
Bottleneck Layer

word2vec phonemes motion energy non-specific
Multimodal representations

- We saw this in the school already
- Bimodal / split auto encoder (Ngiam et al. 2011)
- DCCA, DCCAE (Wang et al. 2015)
Multimodal representations

- We saw this in the school already
- Bimodal / split auto encoder (Ngiam et al. 2011)
- DCCA, DCCAE (Wang et al. 2015)

Multimodal fusion of brain structural and functional imaging with a deep neural machine translation approach

Md Faijul Amin*, Sergey M. Plis*, Eswar Damaraju*, Devon Hjelm*, KyungHyun Cho†, Vince D. Calhoun*‡

*The Mind Research Network, 1101 Yale Blvd, Albuquerque, NM 87106, USA
†Courant Institute & Center for Data Science, New York University, New York, NY 10012, USA
‡Department of ECE, University of New Mexico, Albuquerque, NM 87106, USA
Results: predicting brain activity

Input = word2vec
Output = story data
Results: predicting brain activity

Input = phonemes
Output = story data
Results: predicting brain activity

Input = motion energy
Output = movie data
Results: predicting brain activity

Input = word2vec
Output = movie data
Results: predicting brain activity

Input = S2
Output = movie data (S1)
Results: predicting brain activity

Input = S1
Output = movie data (S2)
A unified model
A unified model

• For experiments, subjects and feature spaces
A unified model

- For experiments, subjects and feature spaces
- Enables standard neuroimaging tasks
 - Good performance
A unified model

• For experiments, subjects and feature spaces
• Enables standard neuroimaging tasks
 • Good performance

• Also learns an embedding space for brain responses / stimulus features
Exploring the learned space
Exploring the learned space
Exploring the learned space
Exploring the learned space

Top-n similar: mammals
mammal marine_mammals
primates organisms
microorganisms humans
microbial animal
microbes reptiles
creatures species
Exploring the learned space

Top-n similar: mammals, mammal, marine_mammals, primates, organisms, microorganisms, humans, microbial, animal, microbes, reptiles, creatures, species
Exploring the learned space

Top-n similar: mammals, mammal, marine_mammals, primates, organisms, microorganisms, humans, microbial, animal, microbes, reptiles, creatures, species.
Future work
Future work

• Use spatial information
Future work

• Use spatial information

• Use temporal information
Future work

• Use spatial information

• Use temporal information

• Learn allocation of feature spaces automatically, not as hyper parameter
Thank you