Biological Relevance of Active Gel Theory

J.F. Joanny
G. Salbreux
K. Sekimoto
H. Turlier
R. Voituriez

F. Julicher
K. Kruse
B. Audoly
Actin-based dynamics

Hela cell, images Charras & al, JCB, 2006

Actin Intrinsic Treadmilling

ADP ATP

Pi

Actin Intrinsic Treadmilling
Many microscopic mechanisms
How to describe?

P.C. Martin, O. Parodi, P. Pershan

Generalized Hydrodynamics

Conserved quantities, Broken symmetries
How to describe?

P.C. Martin, O. Parodi, P. Pershan

Generalized Hydrodynamics

Conserved quantities, Broken symmetries

• Actin (monomer+polymer)
How to describe?
P.C. Martin, O. Parodi, P. Pershan

Generalized Hydrodynamics
Conserved quantities, Broken symmetries

- Actin (monomer+polymer)
- Myosin (bound, unbound)
How to describe?
P.C. Martin, O. Parodi, P. Pershan

Generalized Hydrodynamics

Conserved quantities, Broken symmetries

- Actin (monomer+polymer)
- Myosin (bound, unbound)
- Momentum (force)
How to describe?

P.C. Martin, O. Parodi, P. Pershan

Generalized Hydrodynamics

Conserved quantities, Broken symmetries

- Actin (monomer+polymer)
- Myosin (bound, unbound)
- Momentum (force)
- Polarization
Stress

Orientation dynamics

ATP consumption rate

Fluxes (myosin, actin, cytosol)

Velocity Gradients

Orientation direction gradients ∇P

Chemical potential difference $= \Delta [ATP - ADP - Pi]$

Chemical potential gradients $\nabla [myo, act, cyt]$
\[
(1 + \tau \frac{D}{Dt}) \left\{ \tilde{\sigma}_{\alpha\beta} + \zeta \Delta \mu \ q_{\alpha\beta} + \frac{\nu_1}{2} (p_\alpha h_\beta + p_\beta h_\alpha - \frac{2}{3} p_\gamma h_\gamma \delta_{\alpha\beta}) \right\} = 2\eta \tilde{\nu}_{\alpha\beta} + \xi^{(s)}_{\alpha\beta}
\]

\[
(1 + \tau \frac{D}{Dt}) \{-p + \tilde{\zeta} \Delta \mu + \tilde{\nu}_1 p_\gamma h_\gamma \} = \eta \nu_{\gamma\gamma} + \xi
\]

\[
\frac{D}{Dt} p_\alpha = \left(1 + \tau \frac{D}{Dt}\right) \frac{1}{\gamma_1} h_\alpha + \lambda_1 p_\alpha \Delta \mu - \nu_1 p_\beta v_{\alpha\beta} - \tilde{\nu}_1 p_\alpha v_{\beta\beta} + \xi^{(p)}_\alpha
\]

\[
r = \lambda_1 p_\alpha h_\alpha + \Lambda \Delta \mu + \zeta q_{\alpha\beta} \tilde{\nu}_{\alpha\beta} + \tilde{\zeta} v_{\alpha\alpha} + \xi^{(r)}
\]

\[
< \xi^{(s)}_{\alpha\beta}(t, x) \xi^{(s)}_{\gamma\delta}(t', x') > = 2k_B T \eta \left[(\delta_{\alpha\gamma} \delta_{\beta\delta} + \delta_{\alpha\delta} \delta_{\beta\gamma}) - \frac{2}{3} \delta_{\alpha\beta} \delta_{\gamma\delta} \right] \delta(t - t') \delta(x - x')
\]

\[
< \xi^{(r)}_{\alpha}(t, x) \xi^{(r)}_{\beta}(t', x') > = 2 \frac{k_B T}{\gamma_1} [\delta_{\alpha\beta} - p_\alpha p_\beta] \delta(t - t') \delta(x - x')
\]

\[
< \xi(t, x) \xi(t', x') > = 2k_B T \Lambda \delta(t - t') \delta(x - x')
\]

\[
< \xi^{(s)}_{\alpha\beta} \xi^{(s)}_{\gamma\delta} > = 0, \quad < \xi^{(s)}_{\alpha\beta} \xi^{(r)} > = 0,
\]

\[
< \xi^{(p)}_{\alpha}(t, x) \xi^{(r)}(t') > = 2k_B T \lambda_1 p_\alpha(x) \delta(t - t')
\]
K. Takiguchi, 1991
P.M. Bendix et al 2006

Contractility measured in units of Pascal
(like a pressure or an elastic modulus)

\[10^3 \text{ Pascal} \]
\[2u = \ldots + pp + \ldots \]
Nematic Hydrodynamics

(F.M. Leslie, F. Brochard, P.G. de Gennes, P. Pieranski, E. Guyon)

\[
\frac{Dp}{Dt} = \ldots + p + \ldots = \ldots + u_1 p + \ldots
\]

\[
\cos(2\theta) = \frac{1}{n_1}
\]
Spontaneous Frederiks transition

R. Voituriez et al
\[
\frac{\partial}{\partial t} = \frac{K}{1} \frac{\partial^2}{\partial z^2} + (1+n_1)u_{zx}
\]

\[
2 \sim u_{zx} \approx \sim \sin(2 \) + 1K \frac{\partial^2}{\partial z^2}
\]

\[
\frac{\partial}{\partial t} = \frac{K}{1} \frac{\partial^2}{\partial z^2} \sim \sin(2 \)
\]

\[
(2 \sim)_c = \frac{K}{1}(\frac{1}{D})^2
\]
Topological Singularities

\[F = \int d^2 x \left[\frac{K}{2} (\nabla \cdot p)^2 + \frac{K + \delta K}{2} (p \cdot \nabla p)^2
+ k \nabla \cdot p - h_{||} p^2 \right] \]

\[K > 0 \quad K < 0 \quad K = 0 \]
Spontaneously moving topological singularity

\[v_\theta(r) = \omega_0 r \log(r/r_0), \quad \omega_0 = \frac{2 \sin 2\psi_0}{4\eta + \gamma_1 v_1^2 \sin^2 2\psi_0} \zeta \Delta \mu \]
Microtubules + Motors

(François Nedelec et al)

+ A. Bernheim et al, A. Bausch et al
Actomyosin contractility rotates the cell nucleus
A. Kumar, A. Maitra, M. Sumit, G.V. Shivashankar, S. Ramaswamy
Pure Shear (Elongational Flow)

\[t = \sin(2\theta) x v_x + \ldots \]

\[t = 0 \text{ Stable if: } x v_x > 0 \]

\[t = \frac{1}{2} \text{ Stable if: } x v_x < 0 \]
Actin: \(a = 0 \)
Xenopus Egg Wound healing

C.A. Mandato, W.M. Bement
Xenopus Egg Wound healing

C.A. Mandato, W.M. Bement
Want to describe?

- Why does it closes?
- Ring closure speed
- Flow pattern
- Alignment pattern

Equations for active isotropic liquid close to ordering transition

Excess contractility in the ring

Closure Time: $T \geq 30\text{ min}$
Treadmilling Time: 1.5 min
$e \geq \text{ const}$
\[4\eta \partial_r (\partial_r + \frac{1}{r}) v_r + (\partial_r + \frac{2}{r})(\zeta \Delta \mu + \beta_1 \chi) \tilde{Q} = 0 \]
\[\frac{\partial \tilde{Q}}{\partial t} = -\frac{\chi}{\beta_2} \tilde{Q} + \frac{\beta_1}{2} (\partial_r - \frac{1}{r}) v_r \]

\[v_r(r_0) = -\frac{\zeta \Delta \mu_1^2 \beta_1 \beta_2}{16\eta^2 \chi} a + \frac{\zeta \Delta \mu r_0}{2\eta}, \quad v_r(r_1) = -\frac{\zeta \Delta \mu_1}{8\eta} a \]
Cytokinesis

L929 Cell, myosin GFP, J. Sedzinski, E. Paluch
Challenges

- Orientation pattern and flow
- Cell division failure
- Constriction dynamics (non monotonous)
- Constriction time independent of initial size
- Constriction speed decreases when turn over increases

Facts: Myosin and Actin densities constant
Width of extra contractility scales with size
Contractility generates flow

Simple balance:

Gel conservation law

\[\frac{\partial e}{\partial t} + \nabla \cdot (e \nabla) = \bar{k}_d e + v_p \]

Stationary thickness:

\[e_0 = \frac{v_p}{k_d} \]

Curvilinear dynamical equations

+ anisotropic Laplace’s Law

Flowtime: \(t = h \cdot z \cdot \Delta m \)

Cortex renewal time: \(k_d^{-1} \)
Sand-dollar zygote
G Von Dassow
Cell division success/failure

$\frac{\zeta}{\zeta_{\text{max}}}$

$t = 0.00 \ T_a$

0 s

VX-680

0 s

Fig. 5. Cytokinesis duration is independent of initial cell size: Furrow radius r_f as a function of time t/T_a for four initial cell radii $R_0 = 0.5, 1, 2$ and 4. (Inset) Corresponding activity signals of width proportional to R_0, plotted as a function of the contour length s.

$C. Elegans$
Non monotonic constriction rate
Non monotonic constriction rate

2 to 4 cells
Mean constant constriction rate
(47 to 23 μm) = 0.247 μm/s

4 to 8 cells
$y = 0.0107x$
$R^2 = 0.982$
Changing turnover

\[kdTa = 30 \]

\[kdTa = 40 \]

\[kdTa = 80 \]
Why division time independent of initial size?

Dissipation due to cortex "viscosity":

\[g \left(\frac{1}{R} \frac{dr}{dt} \right)^2 2A_r e \]

Work done upon contraction per unit time:

\[\frac{\partial W}{\partial r} \frac{dr}{dt} \]

Area:

\[2A_r = \frac{4}{(1 + \frac{3}{2} \cos \frac{1}{2} \cos^3)} \]

\[a = a / 2 \quad R_0 \]

\[g \left(a / t \right) = h(a / t) \]

\[a = \frac{g}{m} \quad E \]
Explains:

• Discontinuous character of the transition
• Constriction time independence if furrow width scales like initial radius
• Correct order of magnitude
• Effect of furrow width at constant extra contractility
• Non monotonic constriction rate
• Slowing down upon increasing turnover
Nematic Tissues?

Guillaume Duclos, Pascal Silberzan

P Friedl
Spontaneous Frederiks transition

R. Voituriez et al 2005
C B Mercader, J F Joanny, J P
A unique and robust approach to many different phenomena

- Cell motility
- Cell oscillations*
- Cell wound healing*
- Cytokinesis*
- Induced Blebs
- Spinning spindles, spinning nucleus
- mitotic spindle
- TISSUE MECHANICS, DEVELOPMENTAL BIOLOGY
Thank you!