Bayesian inference of cascades on networks

Alfredo Braunstein

Politecnico di Torino

NIPS
Montreal, Dec 2015
A. Ingrosso, J. Bindi, L. Dall’Asta
The patient zero or index case problem

INPUT

Alfredo Braunstein
Bayesian inference of cascades on networks
Politecnico di Torino
The patient zero or index case problem

INPUT

- A contact network in a community:
 - Hospital wards [Vanhems’13]
 - Livestock Surveillance [Bajardi’12]
 - Many others, e.g.: Sexual contacts [Rocha’10], Proximity in a closed environment [Isella’10]
The patient zero or index case problem

INPUT

- A contact network in a community:
 - Hospital wards [Vanhems’13]
 - Livestock Surveillance [Bajardi’12]
 - Many others, e.g.: Sexual contacts [Rocha’10], Proximity in a closed environment [Isella’10]

- An epidemic snapshot at time $t = T$
 - Susceptible
 - Infected
 - Recovered
The patient zero or index case problem

INPUT

- A contact network in a community:
 - Hospital wards [Vanhems’13]
 - Livestock Surveillance [Bajardi’12]
 - Many others, e.g.: Sexual contacts [Rocha’10], Proximity in a closed environment [Isella’10]

- An epidemic snapshot at time $t = T$
 - Susceptible
 - Infected
 - Recovered

OUTPUT

- Find the *source* node at time $t = 0$
Related Problems

INPUTS

- Various types of observations: time and space scattered and noisy
- Unknown epidemic “age” T
- Time-evolving networks
- Multiple sources
The patient zero or index case problem

Related Problems

INPUTS

- Various types of observations: time and space scattered and noisy
- Unknown epidemic “age” T
- Time-evolving networks
- Multiple sources

OUTPUTS

- Identifying contagion paths and undiscovered positives
- Predicting of future development of an outbreak
- Reconstructing the contact network (from the observation of multiple cascades)
The (discrete) SIR process on a network

Per-vertex variables $x_i \in \{S, I, R\}$. At each t, each \textbf{infected} node $x_i^t \in I$

- attempts \textbf{contagion} to susceptible neighbors in $x_j^t \in S$ with probability λ. If successful, $x_j^{t+1} = I$

- attempts \textbf{recovery} with probability μ. If successful, $x_i^{t+1} = R$
The (discrete) SIR process on a network

Per-vertex variables $x_i \in \{S, I, R\}$. At each t, each **infected** node $x_i^t \in I$

- attempts **contagion** to susceptible neighbors in $x_j^t \in S$ with probability λ. If successful, $x_j^{t+1} = I$

- attempts **recovery** with probability μ. If successful, $x_i^{t+1} = R$

\[
P(x_i^{t+1}|x^t) = \prod_i P(x_i^{t+1}|x^t),
\]

\[
P(x_i^{t+1} = S|x^t) = \mathbb{I}[x_i^t = S] \prod_{j \in \partial i} (1 - \lambda \mathbb{I}[x_j^t = I])
\]

\[
P(x_i^{t+1} = I|x^t) = \mathbb{I}[x_i^t = I](1 - \mu) + \mathbb{I}[x_i^t = S](1 - \prod_{j \in \partial i} (1 - \lambda \mathbb{I}[x_j^t = I]))
\]

\[
P(x_i^{t+1} = R|x^t) = \mathbb{I}[x_i^t = I] \mu + \mathbb{I}[x_i^t = R]
\]
Approaches

- Topological centrality measures [Shah’10], [Comin’11], [Zhu’12]
The problem and classical approaches

Approaches

- Topological centrality measures [Shah’10], [Comin’11], [Zhu’12]
- Bayesian inference: compute $P(x^0|x^T)$
 - “Brute-Force” Monte Carlo (variant: use soft compatibility [Antulov-Fantulin’14])
 - Naive Bayes
 - Belief Propagation
Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution

$$ P(x^T | x^0) \approx \prod_i P(x_i^T | x^0) $$

- Marginals $$ P(x_i^T | x^0) $$ can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard & al.'14]
Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution
 \[P(x^T|x^0) \approx \prod_i P(x_i^T|x^0) \]

- Marginals \(P(x_i^T|x^0) \) can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard & al.’14]

- Then maximize over \(x^0 \) the likelihood \(P(\mathcal{O}|x^0) \approx \prod_i P(x_i^T = \mathcal{O}_i|x^0) \)
The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution:
 \[P(x^T | x^0) \approx \prod_i P(x_i^T | x^0) \]
- Marginals \(P(x_i^T | x^0) \) can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard & al.'14]
- Then maximize over \(x^0 \) the likelihood:
 \[P(\mathcal{O} | x^0) \approx \prod_i P(x_i^T = \emptyset_i | x^0) \]
- Is the approximation accurate? If no, is it because of Naive MF?
Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution
 \[P(x^T | x^0) \approx \prod_i P(x_i^T | x^0) \]

- Marginals \(P(x_i^T | x^0) \) can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard & al.'14]

- Then maximize over \(x^0 \) the likelihood \(P(O | x^0) \approx \prod_i P(x_i^T = O_i | x^0) \)

- Is the approximation accurate? If no, is it because of Naive MF?

- Note that Naive MF can easily be replaced by e.g.:
 \[P(x^T | x^0) \approx \prod_{\langle ij \rangle} \frac{P(x_i^T, x_j^T | x^0)}{P(x_i^T | x^0)P(x_j^T | x^0)} \prod_i P(x_i^T | x^0) \] [Lokhov, Mézard & al.'14, maybe]
Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution
 \[P(x^T | x^0) \approx \prod_i P(x_i^T | x^0) \]
- Marginals \[P(x_i^T | x^0) \] can be computed either with MC or with
 Dynamical Message-Passing \textbf{[Lokhov, Mézard & al.'14]}
- Then maximize over \(x^0 \) the likelihood \[P(\mathcal{O} | x^0) \approx \prod_i P(x_i^T = \mathcal{O}_i | x^0) \]
- Is the approximation accurate? If no, is it because of Naive MF?
- Note that Naive MF can easily be replaced by e.g.:
 \[P(x^T | x^0) \approx \prod_{\langle ij \rangle} \frac{P(x_i^T, x_j^T | x^0)}{P(x_i^T | x^0)P(x_j^T | x^0)} \prod_i P(x_i^T | x^0) \textbf{[Lokhov, Mézard & al.'14, maybe]} \]
Naive Bayes (2/3)

Graph

Ising

\[\text{Pearson}(\sigma_j, \sigma_k | \sigma_i = 1) \]

SI

\[\text{Pearson}(x_j^T, x_k^T | x_i^T = 1) \]
The problem and classical approaches

Naive Bayes (2/3)

Graph

\[i = \bullet \]

Ising

\[\text{Pearson}(\sigma_j, \sigma_k | \sigma_i = 1) \]

SI

\[\text{Pearson}(x_j^T, x_k^T | x_i^T = 1) \]
The problem and classical approaches

Naive Bayes (2/3)

Graph

\[
i = \bullet
\]

Ising

\[
\text{Pearson}(\sigma_j, \sigma_k | \sigma_i = 1)
\]

SI

\[
\text{Pearson}(x_j^T, x_k^T | x_i^T = 1)
\]
The problem and classical approaches

Naive Bayes (3/3)

- Sites x_j^T and x_k^T interact e.g. through x_i^{T-1}
The problem and classical approaches

Naive Bayes (3/3)

- Sites x_j^T and x_k^T interact e.g. through x_i^{T-1}
- Interactions between surface ($t = T$) variables are long-range
Naive Bayes (3/3)

- Sites x_j^T and x_k^T interact e.g. through x_i^{T-1}
- Interactions between surface ($t = T$) variables are long-range
- The real problem is not to compute $P(x_i^T, x_j^T|x^0)$ accurately but to give a “functional” parametrization of $P(x^T|x^0)$

Alfredo Braunstein

Bayesian inference of cascades on networks

Politecnico di Torino
The problem and classical approaches

Naive Bayes (3/3)

- Sites x_j^T and x_k^T interact e.g. through x_i^{T-1}
- Interactions between surface ($t = T$) variables are long-range
- The real problem is not to compute $P(x_i^T, x_j^T | x^0)$ accurately but to give a “functional” parametrization of $P(x^T | x^0)$
- [Note: to recover the MRF independence property one should fix full columns/trajectories $x_i^{0:T}$]
Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. $x_i = SSSIRRRRR$ can be parametrized by a single *infection time* t_i.
Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. $x_i = \text{SSSI}R\text{RRRR}$ can be parametrized by a single *infection time* t_i
- We can divide the process in two parts:
Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. $x_i = \text{SSSI} \text{RRRR}$ can be parametrized by a single *infection time* t_i

- We can divide the process in two parts:
 1. First, *stochastic* “delays” $s_{ij} \in \{0, \infty\}$ for all $(ij) \in E$ are extracted independently with probabilities $P(s_{ij} = 0) = \lambda$
Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. $x_i = \text{SSS}1\text{RRRRR}$ can be parametrized by a single *infection time* t_i

- We can divide the process in two parts:
 1. First, stochastic "delays" $s_{ij} \in \{0, \infty\}$ for all $(ij) \in E$ are extracted independently with probabilities $P(s_{ij} = 0) = \lambda$
 1. Afterwards, all $t_i \neq 0$ can be computed *deterministically* with the following self-consistling equations

$$t_i = 1 + \min_{j \in \partial i} \{ t_j + s_{ji} \}$$
Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. $\mathbf{x}_i = SSS|IRRRRR$ can be parametrized by a single *infection time* t_i

We can divide the process in two parts:

1. First, *stochastic* "delays" $s_{ij} \in \{0, \infty\}$ for all $(ij) \in E$ are extracted independently with probabilities $P(s_{ij} = 0) = \lambda$

2. Afterwards, all $t_i \neq 0$ can be computed *deterministically* with the following self-consisting equations

$$t_i = 1 + \min_{j \in \partial_i} \{t_j + s_{ji}\}$$

- Key: stochastic parameters are *independent*
A static representation of SIR

A factorized distribution

\[\mathcal{P}(t|x^0) = \sum_s \mathcal{P}(t|s, x^0) \mathcal{P}(s) \]
A static representation of SIR

A factorized distribution

\[P(t|x^0) = \sum_s P(t|s, x^0) P(s) \]

Define

- \(\omega_{ij}(s_{ij}) = \lambda \delta(s_{ij}, 0) + (1 - \lambda) \delta(s_{ij}, \infty) \)
- \(\phi_i(t_i, t_{\partial i}, s_{\partial i}, x^0_i) = \delta(t_i, \delta(x^0_i; 1) (1 + \min_{j \in \partial i} \{ t_j + s_{ji} \})) \)
A static representation of SIR

A factorized distribution

\[P(t|x^0) = \sum_s P(t|s, x^0) P(s) \]

Define

- \(\omega_{ij}(s_{ij}) = \lambda \delta(s_{ij}, 0) + (1 - \lambda) \delta(s_{ij}, \infty) \)
- \(\phi_i(t_i, t_{\partial i}, s_{\partial i}, x^0_i) = \delta(t_i, \delta(x^0_i; I)(1 + \min_{j \in \partial i} \{t_j + s_{ji}\})) \)

\[Q = \frac{1}{Z} \prod_i \phi_i \prod_{i,j} \omega_{ij} \]
A static representation of SIR

A factorized distribution

\[
P(t|x^0) = \sum_s P(t|s,x^0)P(s)
\]

Define

\[\omega_{ij}(s_{ij}) = \lambda \delta(s_{ij}, 0) + (1 - \lambda) \delta(s_{ij}, \infty)\]

\[\phi_i(t_i, t_{\partial i}, s_{\partial i}, x^0_i) = \delta(t_i, \delta(x^0_i; I) (1 + \min_{j \in \partial i} \{ t_j + s_{ji} \}))\]

\[Q = \frac{1}{Z} \prod_i \phi_i \prod_{i,j} \omega_{ij}\]

Then \[P(t|x^0) = \sum_s Q(t, s, x^0)\]
Adding priors

- \(x^T\) depends deterministically on \(t\):
 \[P(x^T | t) = \prod_i \xi_i(t_i, x_i^T) \]

where \(\xi_i(t_i, x_i^T)\) is the indicator function of

\[
\left(x_i^T = S, t_i > T \right) \lor \left(x_i^T = I, t_i = T \right) \lor \left(x_i^T = R, t_i < T \right)
\]
A static representation of SIR

Adding priors

- x^T depends **deterministically** on t: $P(x^T|t) = \prod_i \xi_i(t_i, x^T_i)$ where $\xi_i(t_i, x^T_i)$ is the indicator function of

$$
(x^T_i = S, t_i > T) \lor (x^T_i = I, t_i = T) \lor (x^T_i = R, t_i < T)
$$

- x^0 have a prior concentrated on single-seed initial conditions: $P(x^0) = \prod_i \gamma_i(x^0_i)$ with $\gamma_i(x^0_i = I)$ very small.
Adding priors

- x^T depends deterministically on t: $P(x^T | t) = \prod_i \xi_i(t_i, x_i^T)$ where
 $\xi_i(t_i, x_i^T)$ is the indicator function of

 $\left(x_i^T = S, t_i > T \right) \lor \left(x_i^T = I, t_i = T \right) \lor \left(x_i^T = R, t_i < T \right)$

- x^0 have a prior concentrated on single-seed initial conditions:
 $P(x^0) = \prod_i \gamma_i(x_i^0)$ with $\gamma_i(x_i^0 = I)$ very small.

- Finally, we can write the posterior distribution

 $P(x^0 | x^T) \propto \sum_t P(x^T | t) P(t | x^0) P(x^0)$ as

 $$P(x^0 | x^T) \propto \sum_t \sum_s \prod_{ij} \phi_{ij} \prod_i \phi_i \xi_i \gamma_i$$ (1)
Belief Propagation

\[P(x^0|x^T) \propto \sum_t \sum_s \left[\prod_{ij} \phi_{ij} \prod_i \phi_i \xi_i \gamma_i \right] = \sum_t \sum_s Q(x^0, t, s) \]

Single-instance RS cavity equations / Belief Propagation

- Fixed-point equation \(m = F_{BP}(m) \) for a vector \(m \) (called cavity marginals or messages) that is solved by iteration.
 - On a fixed point (approximate) marginals \(P(t_i|x^T) \) or \(P(x^0_i|x^T) \) can be computed.
 - Fast: each iteration is often linear in the number of edges, needed number of iterations is usually logarithmic.
 - Exact if the factor graph is acyclic.
Results on random graphs

\[N = 1000, k = 4, \lambda = 0.5, \mu = 0.5, \gamma = 10^{-6} \]
Results on random graphs

RRG $N = 1000, k = 4, \mu = 0.5, \ T - t_0 = 10$ and preferential attachment
$\langle k \rangle = 4, \ N = 1000, \ T - t_0 = 5$

Belief Propagation

Dynamic message-passing [Lokhov, Mézard, Ohta & Zdeborová’14]

Jordan centrality [Zhu & Ying’12]
Time-evolving networks

- Temporal networks can be analyzed by using a modified ω_{ij}

proximity [Isella et al.’10]
sexual [Rocha et al’10]
Inferring λ and μ

Inference of parameters

- The likelihood of λ, μ can be computed as:

$$P(x^T | \lambda, \mu) = \sum_{t,g,x^0} P(x^T | t, g) P(t, g | x^0, \lambda, \mu) P(x^0)$$
Inferring λ and μ

Inference of parameters

- The likelihood of λ, μ can be computed as:

$$P(x^T | \lambda, \mu) = \sum_{t,g,x^0} P(x^T | t, g) P(t, g | x^0, \lambda, \mu) P(x^0) = Z$$
Inference of parameters

- The likelihood of λ, μ can be computed as:

\[
P(x^T|\lambda, \mu) = \sum_{t, g, x^0} P(x^T | t, g) P(t, g | x^0, \lambda, \mu) P(x^0) = Z \sim Z_{\text{Bethe}}
\]
Inferring λ and μ

Inference of parameters

- The likelihood of λ, μ can be computed as:
 \[
P(X^T | \lambda, \mu) = \sum_{t,g,x^0} P(X^T | t, g) P(t, g | x^0, \lambda, \mu) P(x^0) = Z \sim Z_{\text{Bethe}}
 \]
Interleaved BP+GA

We need to maximize the log-likelihood \(\mathcal{L} = \log Z \simeq -f_{\text{Bethe}} \) with respect to \(\lambda \) (and/or \(\mu \)), but

\[
\frac{\partial}{\partial \lambda} [f (\mathbf{m}, \lambda)] = \nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda} + \frac{\partial f}{\partial \lambda}
\]
Interleaved BP+GA

We need to maximize the log-likelihood $\mathcal{L} = \log Z \simeq -f_{\text{Bethe}}$ with respect to λ (and/or μ), but

$$\frac{\partial}{\partial \lambda} [f(m, \lambda)] = \nabla_m f \cdot \frac{\partial m}{\partial \lambda} + \frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial \lambda}$$

because $\nabla_m f \equiv 0$ on a FP of BP, as the BP solution is a variational critical point of f.
Inferring λ and μ

Interleaved BP+GA

- We need to maximize the log-likelihood $\mathcal{L} = \log Z \simeq -f_{\text{Bethe}}$ with respect to λ (and/or μ), but

$$\frac{\partial}{\partial \lambda} [f (m, \lambda)] = \nabla_m f \cdot \frac{\partial m}{\partial \lambda} + \frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial \lambda}$$

because $\nabla_m f \equiv 0$ on a FP of BP, as the BP solution is a variational critical point of f.

- Now $\frac{\partial f}{\partial \lambda} (m, \lambda) = -\frac{1}{Z} \frac{\partial}{\partial \lambda} \left\{ \sum_{t,s} e^{\sum_i \log \psi_i + \sum_{\langle ij \rangle} \log \phi_{ij}} \right\} = -\sum_{t,s} \sum_{\langle ij \rangle} \left\{ \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\} \frac{1}{Z} e^{\sum_i \log \psi_i + \sum_{\langle ij \rangle} \log \phi_{ij}} = -\sum_{\langle ij \rangle} \left\langle \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\rangle$, i.e.

the computation of an observable
Inferring λ and μ

Interleaved BP+GA

- We need to maximize the log-likelihood $\mathcal{L} = \log Z \simeq -f_{\text{Bethe}}$ with respect to λ (and/or μ), but

 $$\frac{\partial}{\partial \lambda} [f(m, \lambda)] = \nabla_m f \cdot \frac{\partial m}{\partial \lambda} + \frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial \lambda}$$

 because $\nabla_m f \equiv 0$ on a FP of BP, as the BP solution is a variational critical point of f.

- Now $\frac{\partial f}{\partial \lambda} (m, \lambda) = -\frac{1}{Z} \frac{\partial}{\partial \lambda} \left\{ \sum_{t,s} e^{\sum_i \log \psi_i + \sum_{\langle ij \rangle} \log \phi_{ij}} \right\} = -\sum_{t,s} \sum_{\langle ij \rangle} \left\{ \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\} \left[\frac{1}{Z} e^{\sum_i \log \psi_i + \sum_{\langle ij \rangle} \log \phi_{ij}} \right] = -\sum_{\langle ij \rangle} \left\langle \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\rangle$, i.e. the computation of an observable

- Gradient updates can be interleaved with BP updates to recover the parameters in one single convergence

- Same fixed points as EM but faster
Inferring λ and μ

InfERENCE OF NETWORK TOPOLOGY

- The same approach can be used to infer single-link parameters from multiple cascades:

$$\frac{\partial \log \left(\prod_{\mu=1}^{M} Z^{\mu} \right)}{\partial \lambda_{ij}} = - \sum_{\mu=1}^{M} \frac{\partial f^{\mu}}{\partial \lambda_{ij}} = \sum_{\mu=1}^{M} \left\langle \frac{\partial}{\partial \lambda_{ij}} \log \phi_{ij} \right\rangle_{\mu}$$

- The factor graph consists in M **independent** (fully-connected $N \times N$) networks that share the matrix λ
Inferring λ and μ

Inference of network topology

Karate club network ($N = 34, \lambda = 0.3, \mu = 0.4, T = 5$)
Inference of network topology

Karate club network \((N = 34, \lambda = 0.3, \mu = 0.4, T = 5)\)

- ROC area with \(N(N - 1)/2\) points using sorted inferred values \(\lambda_{ij}\)
Conclusions

- The Bethe parametrization of the probability space of dynamical trajectories gives great **flexibility**!
- Gives a practical solution to the patient-zero problem on real and synthetic networks (exact on acyclic graphs) with many types of observations (incomplete, noisy, etc)
- Allows to tackle the problem of inferring edges \((ij)\) in the supporting network having **no direct access to co-infection events**

Thank you!